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REAL-TIME DETECTION AND DATA ACQUISITION SYSTEM

FOR THE LEFT VENTRICULAR OUTLINE*

Johan Hendrikus Christiaan Reiber**

Ames Research Center

SUMMARY

Dynamic measurements of the left ventricular shape and size are of great

Importance in cardiovascular research and clinical practice. The usual method

for acquiring these data requires that the left ventricular margin be out-

lined manually from television or cineradiographic images for on-line storage

of the coordinates. Because of the large amounts of data required in left ven-

tricular studies, this task is time consuming and tedious.

To automate the data acquisition procedure, a real-time contour detection

and data acquisition system for the left ventricular outline has been developed

using video techniques. The x-ray image of the contrast-filled left ventricle

is stored for subsequent processing on film (cineangiogram), video tape or disc;

The cineangiogram is converted into video format using a television camera.

The video signal from either the TV camera, video tape or disc is the input

signal to the system. The contour detection is based on a dynamic threshold-

ing technique. Since the left ventricular outline is a smooth continuous func-

tion, for'each contour side a narrow expectation window is defined in which

the next borderpoint will be detected. A borderpoint is defined where the

video signal crosses the reference level within the expectation window. Forced

borderpoints are generated if the video signal does not cross the reference

level within the expectation window. Each borderpoint is determined in a

*A dissertation for Ph.D. submitted to the Department of Electrical
Engineering, Stanford Univ., Calif.

**Ph.D. candidate under a postdoctoral joint program between NASA Ames
Research Center and the Dept. of Electrical Engineering, Stanford University,
Calif.



12-bit format by counting 50-MHz clockpulses from the horizontal sync pulses

to the borderpoint.

The center of the expectation window is defined as the average position of

the centers of the expectation windows determined separately by the line and

field'extrapolation principles, respectively. The line extrapolation principle

determines the center of the expectation window as a linear extrapolation from

the borderpoints on the two previous lines in the same field and the field

extrapolation principle as a linear extrapolation from corresponding border-

points in one or two previous fields.

The reference level at which a borderpoint will be detected is calculated

from local sampled video levels on a line-to-line basis. With three sample

points per contour side, the calculated reference level can be adjusted where

the video signal around the border differs from the assumed border model. A

theoretical analysis of the reference level principle is given assuming this

linearized border model. Using the difference of the sampled levels, a simple

adjustment of the expectation window width can be applied advantageously in

areas of low contrast.

A computer interface has been designed and built for the online acquisi-

tion of the coordinates using a PDP-12 computer. The eight most significant

bits of an x coordinate are stored in memory. The y coordinate of a border-

point is defined as its video line-number (8-bit format). The four remaining

bits of each 12-bit data word are used as flag bits. Data transfers occur

under control of the computer interface using direct memory access (DMA).

A quantitative evaluation of the success of the border algorithm was done

using eight aluminum ellipses, four post-mortem casts and two series of left

ventricular angiograms. The video detected outlines were compared with the



outlines determined manually by an experienced investigator, by calculating

image areas and the mean and standard deviations of the differences in the

outlines, after they had been corrected for linear and nonlinear magnification

(due to the recording and projection systems). This evaluation has shown that

the automatically detected outlines agree very well with the manually traced

outlines and that the reproducibility of the video system is much greater than

" - • • - , j n » * I1 i . f -J O'''
for manual tracings of the border.

Results to date with the system have been very good. The advantage of

this system over presently available systems is its potential for on-line,real-
\\

time acquisition of the left ventricular size and shape during angiocardiography.
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CHAPTER 1: INTRODUCTION

Statement of Problem

The function of myocardial muscle is to generate cyclic changes in

tension and dimensions for the chamber walls to propel the required

quantities of blood necessary to meet the circulatory needs of-the body.

Evaluating the status of cardiac function necessitates measurements of

parameters such as length, tension, and the rates of changes of these

parameters throughout individual cardiac cycles. The complex shape and

configuration of the cardiac chambers preclude a description by simple

geometric relationships or a specification by a relatively small number

of dimensions.

Many methods for measuring cardiac chamber dimensions and volume in

animals or man are known. However, angiocardiography has proven with time to

be the most readily available, reliable method for these purposes (refs. 1-4)

It provides information concerning the overall dynamic geometry of the

atria or ventricles. Newer methods, such as radioisotope angiography,

endocardial labeling with tantalum screws, and especially echo-

ultrasound, are rapidly gaining ground. Despite these advances', angio-

cardiography serves and will continue to serve as a standard for

comparison for these methods.

Dynamic measurements of the size and shape of the left ventricular

cavity and their correlation with simultaneously occurring pressure and

flow events are very important in cardiovascular research. The left

ventricular angiograms are obtained clinically during heart catheteriza-

tion, whereby a catheter is inserted into the left ventricle through an

artery from either the groin or the arm. This catheter may also have a

5



pressure-sensitive tip or an extra pressure catheter can be inserted.

The left ventricular cavity is made roentgen opaque by injecting a suit-

able radiodense liquid (usually Renovist) into the intact left ventricle.

A left ventricular shadow is generated at the face of the image intensi-

fier by radiating the area with x-rays from an x-ray tube underneath the

patient. A cine- and video camera are mounted on top of the image

intensifier so that the information can be stored on film', video tape,

and/or disc and can be viewed instantaneously on a TV monitor. The

frame rate is normally between 30 and 60 frames/sec. By use of the

Nyquist criterion, it has been shown that left ventricular volume and

length can be adequately reproduced at 30 frames/sec (ref. 5).

Many methods and equations have been developed for determining heart

size and shape from angiocardiograms (refs. 1 and 6-11). These methods

are difficult to calibrate because there is no standard available for

comparison; the absolute amount of blood in the left ventricle cannot be

measured during life. Post-mortem casts are usually used to calibrate

single-plane or biplane recordings, resulting in regression equations for

a particular x-ray and optical processing chain (refs. 7 and 8). All

volume data then must be corrected with these regression equations,

which are valid only for this particular x-ray system. Large errors

result if these corrections are not applied. For volume.studies in man,

single-plane cine techniques are recommended (ref. 9) because

(1) it reduces the overall x-ray exposure to the patient,

(2) more rapid filming is possible than with biplane large film

angiocardiography,

(3) the total amount of data to be processed is reduced,



(4) the cost of biplane x-ray equipment is prohibitive for most

laboratories.

Single-plane angiocardiography is useful for volume calculations

because the transverse.chamber dimensions in man are nearly equal, which

is not the case for the canine left ventricle (ref. 9). The right ante-

rior oblique (RAO) position is recommended for calculation of volume

because the true spatial left ventricular length can be measured due to
r 4 ~

the position of the heart within the chest. Forshortening of this major

chord usually occurs in the postero-anterior (PA) x-ray projection.

The availability"of-radiographic information concerning chamber

size and shape for clinical or investigative use within reasonable peri-

ods of time is limited. All methods for calculating left-ventricular

volume from angiocardiographic films are tedious and require the inter-

action of an experienced investigator to properly define chamber margins

even with films of excellent quality. Since the introduction of the

digital computer into the cardiovascular laboratory in the early sixties
i

(ref. 12), many aspects of the data processing have been automated.

Among others, the digital computer is used to

(1) store the coordinates of the obtained outlines from angiograms,

(2) correct the boundary points for linear and nonlinear

magnification, v

(3) calculate spatial ventricular dimensions from biplane data or

sequential single-plane data from two different views (refs. 13

and 14),

(4) calculate left ventricular volume and relationships with other

parameters such as pressure,



(5) mathematically reconstruct the chamber as accurately as

possible,

(6) display the results on a CRT viewing screen in the form of

graphs, charts, or the constructed image of the heart chamber
->< ». t - ' *

itselfT

(7) sample analog haemodynamic parameters such as blood flow and

pressure, in synchronization with the angiocardiographic data
"•..'•', , r r t cs.f't: " " " " . " .'. r .' ' i i '- '

(ref. 15), and

(8) spatially track selected points and accurately describe their

spatial motion over a cardiac cycle, using biplane filming and identifi-

cation of discrete points in both sets .of film (ref. 15).

The crucial part in the data acquisition and processing, however,

is still to define and subsequently store the chamber margins in the

,digital, computer. Manual and semiautomatic procedures using manual

digitizers, electronic planimeters, or a flying spot scanner are

currently in use. These methods require a considerable amount of inter-

action on the part of the investigator. In the last decade, many

attempts have been made to automate this procedure and to come up with

an automated border recognizer. As a result, several different

approaches have been reported, of which the most important are described

in chapter 2. .. . , ^. .,,...,.,.., _,

Left ventricular volume obtained from monoplane,or biplane angio-

cardiograms has been demonstrated to be reasonably accurate and clini-

, , cally useful (ref. 15). However, these conventional techniques are not

,„ adequate to determine the dynamic three-dimensional size and shape of

the heart. Calculations of the shape and volume of the left ventricular



chamber from biplane cine- and video-roentgen silhouettes are

conventionally based on two major unwarranted assumptions: (1) all

cross sections of the ventricle oriented perpendicular to its long axis

are elliptical and (2) the orthogonal silhouettes of each cross section

were recorded when the ventricle was positioned so that the major and

minor axes of each of its cross sections were perpendicular to the
* — t ' •• *"* I

respective orthogonal beams of the biplane x-ray system". "Most recently,

computer graphics have been used for three-dimensional reconstruction of

irregularly shaped, nonhomogeneous structures, such as the intact heart,

using multiplanar roentgen projections (refs. 16-20).

To accurately reconstruct the three-dimensional shape and dimensions

of the entire epicardial and endocardial surfaces of the heart, the

roentgen opacity profiles of the video lines'traversing the image of the

heart are required. These profiles are obtained by analog-to-digital

conversion and logarithmic transformation of the intensities at a large

number of points across each video line traversing the heart and for at
>

least 10 angles of view covering a range of 180°. By use of an alge-

braic reconstruction algorithm, the spatial distribution of roentgen

opacities over the entire anatomic extent of the ventricles can be cal-

culated. Needless to say, accurate on-line and real-time border recogni-

tion would be extremely helpful in obtaining the vast amount of data in
%

the above described studies.

To quantitatively assess cardiac contractility and reserve capacity,

the dynamic length/tension relationships must be determined, along with
»

simultaneous measurements of intracardiac and transmural pressures. To

accurately describe these relationships throughout the cardiac cycle,



techniques must be developed for determining the size and shape of the

heart over its full anatomic extent at sufficiently frequent intervals

of time.

This dissertation concentrates on a particular aspect of the complex

data-acquisition system, that is, the research toward an on-line and

real-time left ventricular boundary detector and the subsequent storage

of that data in computer memory.

Statement of Purpose

This dissertation describes a real-time detection and data

acquisition system for the left ventricular outline. The contour detec-

tion and acquisition occur at the video rate of 60 fields/sec. The

total system has the potential for future on-line use. The capability

of the system for detection of the left ventricular outline from angio-

cardiograms is illustrated. An evaluation of the system for determining

the accuracy with which it detects the outlines compared with a manual

digitizing method is given. Possible improvements and extensions for

continuing research in this area are described.
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CHAPTER 2: ROENTGEN VIDEOMETRY

The video technique for dynamic determinations of the dimensions
\

and shapes of objects from roentgenographic data with particular refer-

ence to angiocardiography is called roentgen videometry.

Applying this technique to the roentgenographic image information

requires that the input data be available in video format. The roent-
• • 1 5 ' .' J -, , >

genographic information is usually stored on film, video tape, or disc.

For quantitative measurements of variations in either the dimensions or

the luminosity of objects of interest in the x-ray images during dynamic

angiography, conventional video cameras do not produce satisfactory

images. Three characteristics of these cameras make them unsuitable for

this purpose: (1) image integration and storage, (2) interlaced scan-

ning, and (3) image retention. To avoid the degradation of temporal

resolution, the use of noninterlaced scanning, synchronized 60/sec

pulsed operation of the x-ray source and a camera with minimal image

retention, such as image orthicon, lead monoxide vidicon, and silicon

diode integrated target epicon are recommended (ref. 21).

To process individual film frames, a conventional camera can be

used to convert the image into video format. Initially, large-film

x-ray systems were used with film speeds of 6 to 12 films/sec. Advances

in technology have allowed motion picture systems with speeds of

30-60 frames/sec, and for experimental use, even up to 270 and ' "

540 frames/sec. The motion picture studies allow for beat-by-beat

analysis of recorded events.

It was pointed out in the Introduction that calculating left

ventricular volumes from angiocardiographic film is very tedious and

11



requires the interaction of an experienced investigator to define the

outlines. The availability of computers in the cardiovascular laboratory

has allowed reduction of the large volumes of data that result from the

detection of the left ventricular outline. The crucial part in evalu-
\

ating left ventricular angiograms is therefore the definition of the

margin of the left ventricular chamber. Much research is done to auto-

..-, mate this >.procedure. This chapter gives an overview of the most impor-

tant I systems that have been reported.

The videometry systems can be divided into three categories:

(1) Analog video processing - uses a video signal at 60 fields/sec

from a video disc in the stop-action mode or from video .converted cine-

angiograms. The operator-interaction adjustments may consist of elimi-

, nating background structures, adjusting pedestal level, gain, or shading

control.

,(2) Digitized video processing - The video image is digitized and

stored in a computer memory. Different border recognition algorithms

can be applied.

(3) Light pen computer processing - The ventricular borders are

traced with a light pen and the contour coordinates are stored in the

computer for subsequent processing.

'• !• '"-'• - - ' -v -f., , ,.

Analog Video Processing

One of the first reported systems was by the Mayo Clinic and used a

biplane video angiographic system for dynamic measurements of the volume

and shape of the left ventricle (refs. 16 and 22-28). A main feature of

this system was the so-called video quantizer. Special electronic

switching and delay circuitry allows one to record -the orthogonal image

12



pairs side by side on the same video field. An operator 'interactive

flying-spot scanner assembly is used to process the video signal for

automated border recognition. The video signal that represents the ana-

tomic structures surrounding the ventricular silhouette is adjusted to

the same voltage level around the complete perimeter of the ventricular

chamber to facilitate automatic electronic recognition of the ventricu-

lar borders. The adjustments consist of signal .pedestal, and'sign'al gain,

plus horizontal and vertical shade control for each video field. The

flying-spot scanner assembly permits further improvement of the image by

enabling the operator to manually brighten cardiac catheters, ribs,

diaphragmatic borders of the liver, and other radiopaque structures

superimposed on the cardiac borders and to darken filling defects in the

ventricular chamber, particularly near the mitral valve. For this, the

operator uses a pencil or eraser and direct visual feedback control by

means of the video monitor. This manual shading technique frequently is

not necessary when optimal x-ray penetration has been achieved.

The final interaction with the image at this stage is that the

operator adjusts the video quantizer level so that, in his best judgment,

the brightened spots marking the four border recognition points on the

horizontal lines traversing the silhouettes of the ventricular chamber

coincide with, as well as constitute, a complete brightened outline of

the orthogonal borders of the chamber.

Four high-speed digital counters are used to measure the distance

of the left ventricular silhouettes from the left edge of the television

picture by counting 19-MHz clock pulses over these periods. These data

are stored in real time in a digital computer for subsequent processing.

13



Another example of the use of an operator interactive border

recognition system is to determine quantitatively the regional left-

ventricular wall dynamics (ref. 29). Opacification of the left ventricle,

adequate for wall thickness studies is achieved after the contrast mate-

rial is injected into the main pulmonary artery. The video image con-

trast is adjusted at the time of analysis to provide for maximal signal/

noise ratio of the epicardial and endocardial outlines for optimal border
i i > ,

recognition. This adjustment is critical for reliable analy (®s and must

be performed for each selected region of the ventricular wall. The

videometry system then recognizes the endocardial and epicardial borders;

only the selected segment gives reliable data.

A thresholding technique with constant threshold level was reported

in 1970 by Cowey (ref. 30). Single cine frames are scanned by a vidicon

camera and, with a special effect circuit, only the region around the

ventricle is selected while the rest is blanked out. With this constant

threshold level, only ventricles in pictures with exceptional contrast

can be recognized.

The transit time of a horizontal video scan line through a cross

section of the left ventricle is measured by counting 10-MHz clock

pulses during the thresholding interval. These data are stored in a

computer and the volume is calculated using Simpson's rule for the cylin-

drical disks, with height equal to the space between scan lines and

diameter determined by the measured line width.

Another method that uses a video quantizer was described by Marcus

and coworkers (refs. 31 and 32). Left ventricular angiograms taken in

the RAO position at 60 frames/sec are projected with a flickerless



projector onto a Plumbicon television camera. A second television

camera, the key camera,is used by a skilled operator to mask out noncon-

tributing portions of the film and to shade selected areas so that the

specified chamber can be identified accurately. The pictures are rotated

so that the long axis of the opacified left ventricle is aligned hori-

zontally on the television screen. A video planimeter with a variable

threshold level is adjusted by the operator so that an accurate fit is

obtain ^ between the opacified area of the video planimeter and the area

actually visualized. Three additional techniques aid in obtaining an

accurate fit: (1) The extraneous background is eliminated by a mask that

consists of a gray-on-black silhouette constructed slightly larger than

the greatest area of the opacified ventricle in diastole. The mask is

superimposed on the primary camera image by'the key camera via a video

keyer. (2) The operator can compensate for unequal distribution of con-

trast material in the ventricle by shading the television image either

horizontally or vertically. (3) In any local area within the mask, den-

sity can be added or subtracted from the video image by blackening or

whitening areas and superimposing these densities on the film camera

image via a video mixer. This last technique is used to compensate for

markedly uneven distribution of contrast material which sometimes occurs
i

when unopacified blood .from the left atrium enters the left ventricle.

The video planimeter determines the area of the opacified left

ventricle on each cine frame by integrating the time that the gated tele-

vision signal spends above the preset density threshold. A gated video

comparator circuit determines when the video signal exceeds the

threshold level. A second video planimeter.determines the maximum

15



length of the left ventricle on each cine frame by measuring a gated

horizontal band between the aortic valve and the left ventricular apex.

' The area and length are thus provided as analog signals, but are con-

verted to digital format for subsequent processing. Volumes determined

by this automated method compared with those obtained by manual planim-

etry using the area-length method gave a correlation coefficient of 0.96.
i
A later-version of this system (ref. 32) required that the long axis

of 'the'ventricle be perpendicular to the television 'raster by rotating

't'he television camera at the time of analysis. Each parallel section is

assumed to' be circular, and the ventricular volume, the sum of the vol-

umes of the individual disks, can be determined by an electronic

double-integration technique. • • • :

The real-time detection and data acquisition system for the left

ventricular outline, which is proposed here, must be arranged in this

'analog video category. This system is based on a dynamic thresh-'

•' oldirig technique, whereby the reference level at which a border p'oint is

detected is calculated from local sampled video levels on a line'-to-line

basis. Detection of a border point is allowed only within a narrow

expectation window that dynamically adapts to the left ventricular out-

line. The center of the expectation window on a particular line is

determined by detected border positions on the previous two lines in the

same field and by corresponding border points in the previous one or two
. , ; - • ' • • 1 , I , , ' • ' - , - . : -., , ,

fields.

Because of the fixed video scan direction, the projected left

ventricle should preferably be oriented so that the longest, chord is

about perpendicular to the scan lines. At the average, the slope of the

16



left ventricular outline is then approximately perpendicular to the scan

I
lines, thereby maximizing the density changes in the video signal at the

scan lines traversing the left ventricle. This will result in' a more

accurate and stable detection process.

The system has been implemented so that no more than two contour

points will occur ,on a video line traversing the left ventricle, one for

the left border and one for the right border. In this content, left and

right are defined with respect to the chord from the left-hand side of

the designated aortic valve plane to the apex, as viewed by the investi-

gator on a monitor screen. Allowing only one border point on a video

line per contour side is justified by the fact that situations requiring

more than one border point would only very seldom occur, even in

nonoptimized left ventricular orientations.

An early prototype,I contour detector is described in chapter 3.

The computer interface for the data acquisition of the obtained contour

information and the totally revised contour detector prototype II are

described in the remaining chapters. An evaluation of the success of

the applied border algorithm is also given.

Digitized Video Processing

. A threshold method based on statistical principles and heuristics

r I - -,' - 3 .'I J V £.) - I..!

to detect boundaries in radiographic images was reported by Chow and

Kaneko (ref. 33). Their fundamental assumption, which has been empiri-

cally verified, is that the probability distribution of the intensity

for any small region of the picture consisting solely of the object or

the background is unimodal. The probability distribution of a small

region containing a boundary is consequently a mixture of two unimodal

17



distributions and is generally bimodal. The histogram for such a region
!

will therefore generally exhibit^ two peaks and a valley. The problem of

determining the boundary reduces to that of ascertaining to which dis-

tribution each individual image point belongs. The valley point in the

observed histogram, after certain smoothing operations, determines the

threshold that separates the object and background. The thresholds are

thus set dynamically according to local rather than global character-

istics estimated from the observed intensity histograms. Before the

boundary detection algorithm is applied to the scanned images, several

operations are first performed: (1) the logarithmic transform to

restore the radioactive absorption, (2) the subtraction of images with

and without dye injection to remove irrelevant background, and (3) the

averaging operation to suppress noise.

Kaneko and Mancini (ref. 34) describe a method for straight-line

approximation for the boundary of the left ventricular chamber from con-

secutive video or cine frames, assuming that the boundary on a. reference

frame is available. This boundary on the reference frame may be detected

manually through a light pen or by more sophisticated automated video

densitometry methods (ref. 33). The previous boundary is divided into a

set of segments along which local rectangular regions are set up on the

present frame. The boundary on the present frame is.ithen,approximated

by a set of straight lines which minimizes the square error in each rec-

tangular region with the spatial derivative as its weight.

The idea of using the manually or (partially) automatically

obtained boundary of the (n-l)th frame as an approximation for the

boundary of the nth frame has resulted in another approach (ref. 35).
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If the boundary search is restricted to a predetermined area of the pic-

ture, the likelihood of tracing boundaries of objects other than the ven-

tricle and contours that may occur inside the ventricle due to contrast

medium fluctuation and entering of new blood from the left atrium is

reduced. Three types of prior information are used: (1) location - the

search for the next boundary is restricted to some area around the previ-

ous boundary, (2) direction - only eight search directions at increments of

45° are allowed, and (3) sign - using the center of gravity of the previous

boundary, the detection algorithm knows which side is inside or outside

the heart chamber. Only brightness transitions from bright to dark

moving from the inside to the outside are then accepted. After the new
s

boundary points are determined, a smoothing and filtering algorithm is
i

applied. i

An approach that differs from previous work poses the problem of

outline or contour extraction as one of minimum cost tree searching

(ref. 36). It is "a completely automated procedure for the extraction

of the outline of the opacified left ventricle from digitized serial

angiocardiograms." The branch costs or metrics defined are indicative

of the likelihood that'a particular branch lies on the true contour. The

branch metrics incorporate both local and global or contextual image

information.* .-iln this report, one obtained contour is shown and compared

with the outline extracted by a cardiologist. The computer-determined

outline lies in close relation to the manually determined contour, but

outside the outline determined by the cardiologist. Volume comparisons

are not given. This method determines the outline of the left ventricle

plus the aorta; at this stage, the algorithm does not search for the
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aortic valve. However, a separate,algorithm has been developed to find

the aortic valve and the apex from the earlier obtained outline of the

left ventricle plus aorta (ref. 37). This is*done by looking at the

amount of "turn" in the trace at each point along the aorta-ventricle

boundary. The turning for a border point is estimated by fitting a

directed straight line to the points! immediately preceding this border

point and another directed straight line to the points immediately

following this point. The turn angle is then defined as the angle of the

second directed line measured with respect to the first. The algorithm

tracks the turning of the aorta-ventricle outline and uses this informa-
i

tion to find the apex and to. nominate points for the ends of the aortic

valve line. The procedure for locating the apex is based on the expecta-

tion that it will be in a region'of left turns somewhere near the center

of the entire trace. The end points of the aortic valve line are indi-

cated by a local extremum in the right-turn angles. The algorithm

searches for local minimums in the' turn angles that are more negative

than--25°. An objective function is then evaluated for all possible

pairings of candidate-right and candidate-left valve end points. This

objective function is based,on three traits of the aortic valve: (1) The

valve line is one of the shortest lines that will connect the right and

left boundaries of the ventricle-aorta outline^, n (2)5>Thenapex'-normally

falls near the perpendicular bisector of the valve line or, in other

words, the valve line is roughly perpendicular-to-the "centerline" of

the ventricle-aorta silhouette. (3) There is-usually a large right-turn

angle at one or both of the valve line ends.
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Two 20-frame series were processed and the algorithm located the

valve line within 3 mm of the line selected by the cardiologist in all

cases. The apex was also located within several millimeters of the point

selected by the cardiologist in all cases. However, these results were

obtained by ^applying the algorithm to outlines-drawn by an experienced

observer, who also preprocessed the film by filling in gaps in the-out-

line and smoothing-out irrelevant .details. .

An approach whereby a manually defined approximation of"the left

ventricular border is stored in computer memory-and a computer algorithm

detects a more precise border from the obtained data is described in

references 38 and 39. The film is>digitized by a flying-spot scanner,

resulting in 64 gray levels over a-,512 x 512 scan grid. An initial

approximation to the image border is manually traced and stored in memory

(ref. 40). The implemented algorithm assumes that the slope of the con-

trast transfer function across the image border is approximately zero for

background and image areas and approaches a third-degree polynomial at

the border area. Detecting ,the-actual border points then requires the

determination of a third-degree least-squares polynomial that fits >the

data in the border search interval; equating the second derivative of

such a function to zero gives'the point of inflection, where the maximal

ratei of.contrast change occurs; this point is" defined as 'the border

coordinate for that interval. •If the cubic approximation is not well

defined (due to inadequate contrast change), then the border point is

extrapolated from previously valid points.

The procedure now requires that a border search mask be defined by

taking a given number of points on both sides of the trace that is
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judged to define a region in which the actual border lies. The slopes

of contiguous sections of the approximating line determine horizontal or

vertical search directions, depending on whether the slope determined

from the end points of each section is greater or less than 1. The com-

puter algorithm determines the actual border points, which are displayed

on a storage monitor for visual comparison with the manually traced out-

line. The computer contour is then used as the approximation to the

border for the next data frame (instead of tracing an approximation) and

the contour for the next image is calculated, etc., until all frames

have been analyzed and the actual image border of each determined.

An algorithm has been developed by Clayton and coworkers that uses

four separate border definition criteria (ref. 41). Again, a computer is

used to process the video angiocardiographic recordings. A special

interface is applied to transfer the video information, column by column,

to the computer and a border definition algorithm is used to automati-

cally obtain the border coordinates of the ventricular chamber for each

video field (1/60 sec) during systole. To achieve maximum contrast of the

radiographic image and to optimize ventricular mixing, the computer is

programmed to control the dye injection by analyzing the ECG rhythm.

At the beginning of a sequence of fields, a table-top cursor con-

troller is used to mark five points on the image: the right and left

sides of the aortic valve, the extreme points on the left and right

edges, and the apex. This information is used to determine the orienta-

tion of the major axis of the heart and to define the rectangular

position of the image that should be digitized.
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The algorithm is structured to combine various border definition

criteria by forming a product. The terms of the product are based on

a priori assumptions as well as information based on previous lines and

fields from the same angiogram. The border algorithm searches for that

point along a line in the quantized picture matrix which has the maximum

probability of being the right or left border of the left ventricle. The

search can be along either a horizontal or a diagonal line. The proba-

bility that a given point should be designated as the border is computed

for each point using the product of four independent factors. The first

term gives information concerning the location of black-to-white inten-

sity transitions along the line. This term is the moving product of a

normal frequency curve and the derivation of the discrete video levels

for each point along the line, that is, a matched gradient filter. The

maximum value of this term occurs where the set of points most closely

fits the normal curve assumed for the gradient at the border.

The second term (video profile predictor) compares the video levels

of the 10 points on either side of any point with the weighted values of

the video 'levels adjacent to the determined border on previous lines.

This term not only predicts the video level at the border point from the

video level at previous border points, but also predicts the video inten-
. -» •; i i • i r -* ^ r* • « . -

sity profile at the border from the profile shape at borders on previous

lines.

The third term (location) is based on the assumption that the

border is smooth and continuous from line to line. The predicted border

location for a line is based on the direction computed from the border

position on the previous two lines.
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1 The last term (time sequence) predicts, for-a given line, the

location of the border 'in the current video field' along the direction

computed from the border positions on'the equivalent lines in the previ-

ous two fields. The first field for a given sequence is manually

entered to give the system the right 'initial conditions.

The apex is defined by requiring that'the border cannot move outward

whenever the left and right borders are within 15 points of each other.

• When the borders cross or are within 2 points of each other,- the apex is

closed-. A 9-point parabolic smoothing algorithm is applied to the con-

tour, and the aortic valve is then located by searching for the minimum

distance between-any of the first 20 points oh the left border and any

of the first 20 points on the right border.

- By superimposing the computed border and the border determined by

an experienced investigator on the TV monitor, good visual agreement

between the-'two methods was found.

(Authors note: To determine accurately the success of the applied

'border algorithm, a quantitative evaluation is required. This remark is

applicable to all systems described in this chapter. An evaluation

method, applied to,the detection and data acquisition system proposed in

this report, is given an chapter 11.)

Another preliminary investigation in the border detection problem

makes use of maximum likelihood estimations of boundary location (ref. 42).

By use of a'sophisticated, programmable film reader, part of the cine

frame, as indicated by the operator with a light pen, is being digitized

'and the data are being stored 'in the computer; 64 levels of gray are

• recognized. To obtain density data, a line is constructed approximately
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normal to the ventricular border through each initial point. Density

readings are then obtained at each of n points equally divided on

either side of the initial point. As a first approximation, a sharp dis-

continuity is assumed to exist at the boundary. Each sampled data point

can then be written as one of the two constant densities plus an error

term. A likelihood function is determined, and with least-squares

estimates, tthe point most likely to be the boundary point is determined.

A similar procedure can be derived if, the data are assumed to consist of

three line segments instead of two,- thereby assuming the border optical

density graph to be a linear function.

, A method designed for use with a small computer in a clinical

environment is described in reference 43. This method is based on'a

thresholding technique applied to the gradient of each point in the

digitized image. An electronic window is positioned by the operator over

the area to be processed. This section is digitized using 32 gray levels.

To eliminate statistically independent electronic noise,.spatial averag-

ing or multiple digitization is applied. For each digitized point, the

directional derivative is calculated using the 8 closest neighbors. To

obtain a contour, this matrix of values of the gradient of the original

picture function is examined for a selected minimum value. This proce-

dure generally produces rather thick contours. To improve the resolu-^

tion and to eliminate noise spikes and artifacts, a thinning algorithm

is applied twice, followed by a gradient maximum following algorithm

designed to eliminate all but the greatest values of the gradients

remaining in the matrix. The final contour is not a continuous'function,

but gives a multiple of border points at each position along the actual

ventricular boundary.
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Light Pen Computer Processing
v

One of the first systems that used a computer to automate the

determination of volumes of cardiac chambers was reported in 1961 by

Baker and coworkers (ref. 12). This largely mechanical system can be

seen as an initial step toward a modern light-pen computer system. With

two 35-mm projectors, simultaneously recorded RAO and LAO images of

individual frames are projected side by side onto a tracing platform.

The contours are traced in black ink and small operational marks are

appropriately placed to instruct the scanner when to begin or stop mea-

surements. The slotted roller paper is moved forward and the next pair

of biplane data can be traced, etc. The paper now passes through a

scanner unit that uses the nonreflection of light to determine the drawn

borders and marks. The function of the scanner therefore is to measure

the diameters of the traced figures at 1-mm intervals and to transmit the

result to a photomultiplier tube which then transmits it to the computer.

The volumes of the individual cylindrical sections are calculated to

provide the total volume of the chamber.

Another system for on-line processing of the video image was

reported by Heintzen and coworkers (refs. 44-46). Byplay left ventricular

video angiocardiograms are stored on a video disc recorder and replayed

onto a TV monitor in a stop-action mode. Both projections are displayed

side by side on the monitor. The ventricular contours are successively

traced with a light pen and stored on a scan converter. The scan con-

verter reads out the stored information automatically. During each hori-

zontal scan, up to four counters are triggered by the heart boundary

pulses; the clock frequency is 10 MHz. Information corresponding to each
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line of the contour stored in the buffer is read into a digital computer

in real time and stored in an array. Unused portions or lines of each

video field are used to simultaneously record analog data. In practice

a horizontal white bar, the length of which is proportional to the actual

intraventricular pressure, is superimposed in the video field in this

way. This information can be stored in the computer simultaneously with

the border tracing procedure, allowing automated processing of pressure-

volume diagrams.

A volume angiography system for on-line computation of left

ventricular angiograms utilizing a video disc recorder,a light pen unit,

and a digital computer is described in reference 47. The goals'of this

system were to provide a clinical cardiac catheterization laboratory with

an on-line method for determining left ventricular volumes at a reason-

able cost, with readily available video components. The video disc recorder

allows for immediate replay and stop-motion of ventricular angiograms on

a video monitor. The light pen is used by a technician/physician oper-
i

ator to define the margins of the ventricular chamber and store the data

directly in the digital computer. The computer applies preset magnifica-

tion factors and calculates ventricular volume by use of the area-length

method. Comparison of this system with conventional manual processing
/

of cine-film has yielded a correlation coefficient of 0.99.
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CHAPTER 3: CONTOUR DETECTOR, PROTOTYPE I

The left ventricular contour detector prototype I was designed and

built at the Electronics Laboratory, Technological University, Delft,

The Netherlands, in cooperation with the Thorax Center, Erasmus

University, Rotterdam, The Netherlands (refs. 48-52). Using a model

of the left ventricle which sums given slices, volume was calculated

on-line with a special purpose calculator (ref. 53). A copy of this

prototype I was built at NASA-Ames Research Center for use in the Cardio-

vascular Research Laboratory. This device was then used as a working

tool for continuing research on the automated contour detection.' The

basic principles of the prototype I contour detector are described here.

Basic Principles of the Contour Detector

Figure 1 is a block diagram of the system. The x-ray image of the

left ventricle is stored on film. This information is converted into

video format with a television camera. A left ventricular angiogram of

a dog is shown in figure 2. When the negative of conventional film is

used, the left ventricle appears as a bright structure against a dark

background. The video signal from the TV camera is the input signal to

the system. Before any contour^algorithm is applied, several basic

operations are performed on the input signal to provide for a video sig-

nal with an improved signal/noise ratio and a restored dc level. The

signal is amplified, the synchronization pulses are stripped off, and a

1-MHz low-pass filter suppresses the upper frequencies which do not con-

tain relevant contour information. The filtered signal is then clamped

for dc level restoration before it is applied to the analog comparators.
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Figure 2.- Left ventricular angiogram of a dog.

For display and visual feedback, the input video signal passes through a

delay line that equalizes the total delay of the low-pass filter and the

logic circuitry involved in the contour detection. The delayed signal is

then applied to a summation amplifier where the detected contour pulses

are mixed into the video signal with the correct time relation. This

total video signal is the output signal of the system and is used to dis-

play the x-ray image with the detected border on a TV monitor. The rest

of the system is divided into two almost identical subsystems, one for

the left border and one for the right border. In this context, left and

right are defined with respect to the chord from the left-hand side of

the aortic valve plane to the apex as viewed by the investigator on a

monitor screen.
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A contour can be defined as an image structure with- a different

brightness level 'on either side and with a high degree of coherence

between'its successive points. Such a contour can then be detected by

applying a thresholding technique. An analog comparator is used which

compares the video signal with a reference level. The comparator changes

state as the video signal crosses the preset reference level, indicating

the presence of a border point. Simply applying the level detection at a

/
manually adjustable dc reference level would result in the detection of

all the points in the picture with the same brightness level. To elimi-

nate all but the actual left ventricular contour points, 'a starting point

and expectation window are defined. The starting point can be manually

positioned arbitrarily over the monitor screen with a joystick. This

starting point indicates the position where the analog comparator for the

left border is enabled for the first time during a video field. As soon

as the video signal reaches the preset reference level, the first left-

border point is detected. The starting point is usually positioned at

the aortic valve plane. With a short fixed delay after the first left-

border point has been detected, the first right-border point is generated

which functions as the beginning point for the simulated aortic valve.

The aortic valve plane is designated by the generation of a straight line,

which separates the left ventricular chamber from the rest of the

contrast-filled aorta. The generation is stopped as soon as the line

encounters a preset reference level at the right border. The slope of

the simulated aortic valve is_ manually adjustable with the joystick by

rotating its central/shaft. Figure 3 shows a left ventricular cineangio-

. gram taken in a dog with the starting point positioned at the left side
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Figure 3.- Positions of the starting point (SP) and the simulated
aortic valve.

of the aortic valve plane, which is designated by the generated straight

line. The left ventricle has been oriented so that the longest chord is

about perpendicular to the direction of the scan lines. It was explained

in chapter 2, that this is the optimum orientation for the applied

border detection algorithm.

The expectation window is a narrow window that dynamically adapts to

the ventricular shape; the comparator is enabled during this expectation

window period only. The center of the expectation window on line (n+1)

is defined as having the same horizontal position as the border point

BP(n) on the previous line (illustrated in fig. 4). The widths e and
Li

e of the left- and right-hand sides of the expectation window,
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LINE n.

LINE(n+1)-

BP(n)

EXPECTATION
WINDOW

Figure 4.- The center of the expectation window on line (n + 1) is defined'
as having the same horizontal position as the last detected border
point BP(n) on the previous line n.

WHITE LEVEL

vf

REFERENCE
LEVEL

VIDEO LINE n

BLACK LEVEL-

EXPECTATION
WINDOW

respectively, are separately and

manually adjustable.' Clearly, this

particular implementation of the

expectation window principle is

most effective when the major

(a) A border point is detected where chord of the left ventricular cav-
the video signal crosses the

, reference level.

•1
REFERENCE /
LEVEL S

VIDEO LINE n—

BP(n)

r

EXPECTATION
WINDOW

ity is about perpendicular to the

scan direction of the video system.

In order to handle the case

where the video signal does not

cross the reference level within

the expectation window, forced

(b) A border point is detected at the border points are generated. This
beginning of the expectation
window. may result from a sudden change in

the video level at the border

caused .by intervening structures

such as ribs or the diaphragm, or

from a sudden position change in

the actual left ventricular border

from previous border points. The
(c) A border point is generated at the

end of the expectation window. possible situations are illus-

WHITE LEVEL

' 'I

VIDEO LINE n- ^

s—
/
'BP(n)

..

EXPECTATION
WINDOW

Figure 5.- Definition of the border
points with respect to the
expectation window.

trated in figure 5 for the left

border. Figure 5(a) shows the
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normal situation, where a border point is detected within the expectation

window. Consider now the case, as illustrated in figure 5(b), that the

actual contour has shifted to the left so that the video signal is

already above the reference level at the beginning of the expectation

window. A border point is then generated at the beginning of the expec-

tation window as the comparator is enabled. In figure 5(c) the actual

border has shifted to the right so that the video signal is below the

reference level during the entire expectation window period. This situa-

tion is recognized by digital circuitry and a forced border point is then

generated at the end of the expectation window.

The effects of making the expectation window(widths too narrow is
, • '

illustrated with the detected contours in figure 6. Figure 6(a) shows

the situation where e^ f°r the left border is too small. The system
,-- ' '

/
cannot follow the abrupt changes in the contour and instead approximates

' /

it/with a straight line, the slope of which depends on eT. .Figure 6(b)
~ " ' - /

shows the situation where the right-hand side ER of the expectation

/
window for the left border is too small. Again, the contour is approxi-

mated with a straight line wherever this situation is applicable. The

slope of the line depends on e^. If the expectation window is too wide,

•detection, is;JLess s.table, because of intervening structures.

Detection of the right border occurs similarly. The detection is

stopped and an outpulse generated at the ventricular apex when both

borders come within a preset distance, manually adjustable from 200 nsec

to 2 v>sec.

Figure 7 shows an actual left ventricular angiogram whose margins

have been detected using a constant reference level. Notice the error
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(a) Left-hand side of the expectation window for the left border is too
narrow.

36

(b) Right-hand side of the expectation window for the left border is too
narrow.

Figure 6.- Effects of too narrow expectation window widths on the
detected contours.



Figure 7.- Contour detection using a constant reference level.

present near the outflow tract. It is clear that the actual border

cannot be found in this way. This is remedied by use of a dynamic refer-

ence level (adjusted for each line) as described below.

Dynamic Reference Level

The constant reference level principle can be used satisfactorily

only if the brightness level is approximately constant along a ventricu-

lar border. However, in reality, this is seldom the case. The bright-

ness level changes along a border because of shading, nonhomogeneous

distribution of the contrast agent in the left ventricle, and overlapping

roentgen shadows from other organs and structures such as the diaphragm

and ribs.
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A marked improvement is achieved by adjusting the reference level

dynamically according to local brightness levels on a line-to-line basis.

Two sample points are defined as shown in figure 8 for the left border.

BP(n) VR(n)

1 IMF /nt 1 \

VL(n+l)

AL AR »

Figure 8.- Two sample points are defined for the determination of the
reference level for the next line (n + 1) for the left border. The
sample levels are denoted Vĵ (n) and V-^Cn + l), respectively.

With the detected border point on line n denoted by BP(n), the video

signal is sampled inside the ventricle at a distance A^ from BP(n) on

the same line and in the background area at a distance T - A^ from

BP(n) on line (n + 1), where T is the line period. This last' sample

point on line (n+1) thus provides the most recent brightness, information.

The video samples are denoted V̂ (n) and Vĵ n + l), respectively, as indi-

cated in figure 8. The reference level for the border point on line

(n + 1) is then calculated as

Vref(n+l)=| [VR(n)+VL(n+l)]+Vc (1)

where a is a proportionality factor (0 < a < 1) and Vc, a constant

voltage level. A practical value for a is 0.8 to 0.9 and for the dis-

tances AL and AR, approximately 0.5 ysec. The time constant with which

the reference level reaches a new final value after a disturbance depends

on a. A larger a gives a larger time constant. Since the reference

level for the first left- and right-border points cannot be computed from

sample values, initial reference levels for these beginning points are

set by the operator.
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Figure 9 shows the detected contour for a left ventricular angiogram

of a dog when applying the above described dynamic reference level prin-

ciple. The obtained contour agrees well with the outline drawn by an

experienced investigator.

Figure 9.- Resulting contour for a left ventricular angiogram of a dog
when applying the dynamic reference level principle.

Realization of the Contour Detector, Prototype I

After the description of the border algorithm, the realization of

the system according to the block diagram in figure 1 should be rela-

tively straightforward. The operator adjusts the position of the start-

ing point, which enables the analog comparator for the left border and

sets the initial reference level for the first left-border point. The

analog comparator detects the first left-border point which defines the
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expectation window and sample points for the next left-border point. The

reference level is computed from the sample values, resulting in the

second left-border point, etc. The first left-border point determines

the beginning point of the simulated aortic valve, the slope of which is

adjusted properly by the operator. The aortic valve generation is

stopped as soon as the line encounters a preset reference level at the

right border. This preset level is again set by the operator. Expecta-
; :s •! - - j T -:

tion windows and sample points are defined in the same-way as for the

left border. The detection is stopped and the outpulse is generated as

soon as the distance between the left- and right-border points is smaller

than the adjustable apex distance.

For volume calculations using a slices model (ref. 6), the diameter

and volume of circular cross sections of the left ventricle, as sliced by

the horizontal scan lines, are calculated from the detected border points

by a special purpose calculator (ref. 53). The volumes of,-all the cross-

,sectional slices are added, providing an approximation of the left-, ven-

tricular-volume. The accuracy of the calculated volume according to this

method is maximal when the longest chord of the ventricle is again about

perpendicular to the^_d-i~fection of the scan lines.

For-^subsequent processing of the detected contour, it was decided to

build a,computer interface for on-line acquisition of, these data. The

computer interface design is described in chapter 4.



CHAPTER 4: COMPUTER INTERFACE

The computer interface is the link between the contour detector,

which detects the left ventricular outline from angiograms in video for-

mat, and the computer, which enables" one to do calculations using the

border coordinates "once they have been stored in memory. _The-basic func-

tion of the computer interface therefore is to convert the border coordi-

nates to digital format and to transfer them to the computer memory.

Designing the interface for a real-time interaction requires that the

computer interface controls the information transfers to the computer

instead of having the transfers under computer control.

Computer Interface Requirements •

The PDP-12 computer in the Cardiovascular Research ^Laboratory at

NASA-Ames Research Center is capable of doing input/output transfers
i

under control of the external device on a cycle-stealing basis (ref. 54) -

called direct memory access (DMA). The data break facility allows an
/

I/O device to transfer information directly to or from the PDP-12 core
/

memory using DMA. Generally, DMA is advantageous for high-speed I/O

devices rather than transferring data through the accumulator under pro-

gram control, which is slower and ties up the CPU. However, 'the data
\

break device interface requires more control logic, resulting in higher

hardware costs than a programmed transfer interface.

Data breaks are of two basic types: single cycle and three cycle.
\

In a single-cycle data break,- registers in the device (or device inter-

face) specify the core memory address of each transfer and count the num-

ber of transfers to determine the end^of data blocks. In the three-cycle
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data break, two computer core memory locations perform these functions,

simplifying the device interface by omitting two hardware registers.

To initiate a data break transfer of information, the interface

control must

(a) specify the affected address in core memory,

(b) provide the data word by establishing the proper logic levels

at the computer interface .(assuming an input data transfer) or provide

input gates and storage for the word (assuming an output data transfer) ,

(c) provide a logical signal to indicate direction of data word

transfer,

(d) provide a logical signal/-to indicate single-cycle or three-cycle

break operation, and

(e) request a data break by supplying a proper signal, to the

computer data break facility.

The transfer rate from the contour detector to the computer is

relatively, high. . For each video-scan line (63.5 psec) traversing the

left ventricle, two coordinates must be transferred to the, computer.

During the time the CPU is not in a data break cycle requested by the

contour detector, it should be able to service other devices connected to

the computer, continue to execute the main program, and also transfer the

stored border coordinates from core to disk storage once an interrupt

signal is given (to be explained later). Therefore, the data break

should be as short as possible and for that reason the single-cycle data

break was chosen.

\ Figure 10 is a block diagram of the single-cycle data break transfer

interface. The central processor unit (CPU) determines the order of
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EXTENDED DATA
ADDRESS (3 BITS)

CONNECTIONS
TO

INPUT/OUTPUT
DEVICE

CYCLE SELECT

Figure 10.- Block diagram of the single-cycle data break transfer
interface.

events in the PDP-12. CPU timing comprises a series of signal levels -

designated time states - each of which is terminated by a time pulse

(fig. 11). The duration of the CPU timing cycle is 1.6 ysec ± 20 percent.

The cycle is divided into five time states ranging from 250 to 520 nsec

in duration. The time pulses, approximately 100 nsec long, simultane-

ously terminate one time state and initiate the next. Time states are

triggered by leading edges of time pulses; thus the duration of the

pulse does not affect the length of the cycle. During a time state,

operating conditions are established, the register gate inputs are

r . _ ' f c

500 nsec i 350 nsec i 300 nsec i 350 nsec I 350 nsec I

TS 2 TS 3 I TS 4 TS 5 I TS 1 I

TP1 TP2 TP3 TP4 TP5 CYCLE
DONE

Figure 11.- Defined time states for the central processor unit (CPU).
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enabled, and operations are performed on the data in the adders and

shifters. Time pulses also synchronize CPU operations with memory

operations as well as with I/O control.

The timing diagram of a single-cycle data break input transfer, can

now be explained (fig. 12). The cycle select and the transfer direction

do not change"for this particular application, so these signals can be

supplied from a stable dc source; this is hardwired in the interface.
i •'

The break request signal is sampled at 200 nsec before TP5 occurs.

When the break requesjt__is'recognized, the computer completes the current

instruction, generates an address accept pulse at TP1, that is, at the

beginning of the break cycle, to acknowledge receipt of the request, and

then enters the break state to effect the transfer. The address accept

pulse can be used in the device interface to clear the break request

-flip-flop, increment'the content of the address register, etc. If the

break request signal is removed before TP2 of the data break cycle, the
**

computer performs the transfer and returns to programmed operation.

Design of Computer Interface

Figure 13 is a block diagram of the computer interface. The func-

tions of the different blocks and the necessary input and output signals

are described. Figure 14 is a photograph of the implemented computer

interface. (Refer to this figure to clarify which operations the oper-

ator can perform and the kind of feedback he gets from the system.)

The design requirement for the computer interface is to determine

the coordinates of the left ventricular border, as detected by the con-

tour detector, over a number of video fields selected by the operator and

to store these coordinates into core memory. The operator 'sets the
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Figure 14.- Photograph of implemented computer interface.

desired number of video fields to be processed with the dial switches

connected to the block called "field counter" shown in figure 13. This

number can be selected between 0 and 399 to allow dynamic processing over

several consecutive heartbeats. For example, assume a heartrate of 80

per minute, that is, one heartbeat takes 3/4 sec. Since there are 60

video fields per second, to store the information on-line and in real

time during one heartbeat requires 45 video fields. With a catheteriza-

tion, only the first two or three heartbeats after the dye injection give

reliable data, so 135 fields would be sufficient if the processing cycle

is triggered at the right moment. The upper limit of 399* fields gives a
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large safety margin that enables us to (1) store all the-required data

also at lower heartrates, (2) start the processing cycle slightly before

the dye injection, and (3) stop at a moment when all the important data

have been accumulated.

All flip-flops, which require an initial state at the start of a

processing cycle, are initialized by a RESET pulse. There are .three

-possible occurrences for generating this signal: •'

•• (1) when turning on the computer interface.

(2) manually from the computer console when the reformatting program

is loaded from disk storage to core. This program converts the received

, 'data from the computer interface into the same format as generated by the

manual outlining system, making both systems compatible. In a. new ver-

• sion of the reformatting program, the RESET pulse will,be generated under

software control. - - - , - . , ' j

(3) immediately after the switch "enter" has been activated. , This

- • signals the beginning of a processing cycle.

The field counter counts the vertical synchronization pulses 'and

selects the first occurring odd field after the "enter" switch has been

closed, as the first field of the processing cycle'. As a result, the

processing cycle always begins in the same pliase in the interlaced video

system, allowing the operator to compare data of different processing

cycles. •

So long as the counted number of fields is less than the selected

field number, the block called "x and y coordinates" is enabled by a

control signal 'from the field counter. The processing is automatically

' stopped at the end of the field, which made the field counter state equal
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to the selected number of fields. The processing can also be stopped

manually before the end of the planned processing cycle is reached by

returning the switch "enter" to the OFF position.

If the starting point for the contour detector has not been posi-

tioned properly, a contour might not be detected. This situation is

defined when a left-border point on the starting line is missed. A con-

trol circuit in the interface checks this condition for each field and,

if it is satisfied, an indicator light "no cont" (on the front panel)

turns on and the processing cycle is stopped immediately.

In the present system, the processing cycle is started by manually

closing the switch "enter." This works satisfactorily so long as the

left yentricular outline is not detected on-line. However, it is clear

, that, with an improved on-line working contour detector, the processing

cycle should be started automatically. This can be done by mixing a cer-

, tain recognizable code into the video signal, for example, on the first

video line of a field, at a moment.determined by the dye injector. When

, replaying the video from tape or disc, this trigger moment can be

recognized by a simple decoder circuit. The processing cycle.is then

halted when one of the following situations occur: /

(a) when the .switch "enter" -is manually returned to, the initiarl
^

state, r • , . . - . , , , , ( • , ! . ' / ',

(b) when the field counter state equals-the selected number of

fields, and

(c) when a signal is provided by the computer.

The function of,the block "x and y coordinates" is to determine

during a processing cycle: (1) the xl and x2 coordinates for the left
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and right borders, respectively, on each line traversing the l-eft

ventricle and (2) the y coordinates of the starting point and the out-

pulse. The xl coordinate is a measure for the distance from the hori-

zontal synchronization pulse to the left border and the x2 coordinate,

from the horizontal synchronization pulse to the right border. The

coordinates are determined by counting the number of clock pulses over

these time periods. The clock pulses are 5-MHz pulses from a crystal-

controlled oscillator with a temperature coefficient of ±50 ppm/°C. The

coordinates are expressed in an 8-bit binary format and the accuracy

with which a border point is determined is then ±1 bit. Because the

oscillator is continuous (as distinct from a start-stop oscillator), the

positive and negative errors due to the limited resolution are expected

to cancel out at the average for area and volume calculations.

The y coordinate for a particular border point is defined as its

video line number within this field, and is also given in eight bits.

Only the y coordinates of the starting point and outpulse are stored in

memory' because all other y coordinates are just increments by one.

These two y coordinates are stored after all the x coordinates for a

field have been stored. The y coordinate of the outpulse, which is on

the last line traversing the left ventricle, can be used advantageously

to check the performance of-.the system by use of the "single-line display"

(as explained later). The horizontal synchronization pulses function as

clock pulses for the y-coordinate counter, which is cleared by the

vertical synchronization pulse.

For area and volume calculations, only the distance between the

border points on a video line could be used, instead of two x
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coordinates per line. This would require only one 8-bit word.per video

line. However, there are several reasons why storage of the absolute

coordinates was chosen. -, First, to accurately correct the detected out-

line back to actual dimensions, each border point must be corrected for

linear and nonlinear magnification (explained in more detail in

chapter 11). If one would store only relative coordinates, that is, the

distance between the two points on a video line, then the nonlinearity in

the magnification factor could not be accounted for, resulting in a less

accurate determination of actual area and volume. Second, different vol-

ume calculation methods might be applied, some of which require absolute

coordinates, others only relative coordinates. Storing absolute coordi-

nates affords the flexibility to do so. The method used in the Cardio-

vascular Research Laboratory is the area/length volume calculation method,

requiring the area of the left ventricle, which can be determined from

relative coordinates, and the longest chord, which must be calculated

from absolute coordinates (ref. 9). Third, to evaluate the success of

the border algorithm (chapter 11), the detected contour is compared with

the manually traced outline, given in absolute coordinates. The compari-

son is done with the PDP-12 by calculating for each method the distances

from the coordinates to the chord, connecting the left-hand side of the

aortic valve plane and the apex,,_,_and comparing .corresponding distances.

Clearly, absolute coordinates are required. Fourth, with the outline

available in absolute coordinates, all existing software programs for

analyzing, filing, and displaying contour data can be applied. Only one

software reformatting program (chapter 11) is required to make the manual

and video system compatible.
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Each x and y coordinate is assigned a separate memory location.

With these coordinates determined in an 8-bit format, the four remaining

bits of each 12-bit word are used as flag bits. The 12-bit data word

format is given in figure 15.

MSB LSB
0 , 1 , 2 , 3 4 , 5 , 6 , 7 ,'8 , 9 , 10 , 11

FLAG BITS X OR Y COORDINATE

Bits 11-4: x- or y-coordinate
Bit 3: indicates x (bit=0) or y (bit=1) coordinate
Bit 2: aortic valve beginning and end point
Bit 1: discrete point for calibration
Bit 0: x coordinates on selectable video line

Figure 15.- Computer interface, 12-bit data word format.

The most significant bit (bit 0) is .made high for -the x coordi-

nates on a selected video line, which can be brightened on the monitor

screen. The number of this line is determined with respect to the video

line with the starting point, that is, the distance to the starting point

is constant for a selected line. This allows an easy study of the"left

ventricular-width during a heart cycle at a selected distance from- the

aortic valve. This feature ,is also used for test purposes since the x

coordinates on this line are displayed on the front panel of the computer

interface.

The second flag.bit.(bit. 1)^ is .made high for the x and y coordi-

nate of a discrete point. The applied software program requires the

positions of two discrete points on the image intensifier calibration

plate. These discrete points are used to overlay obtained outlines accu-

rately so that the changes in position,, size, and shape of the left

ventricle over a heart cycle can be determined. When the angio
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information from the video disc is used, the positions of these points

need be given only once during a left ventricular study. With the con-

tour detector in the DISCRETE POINT mode, the coordinates'of these points

can be stored into memory by positioning the starting point at each dis-

crete point and enabling the computer interface over a one-field period.
* '' j

The third flag bit (bit 2) indicates' the x coordinates of the

beginning and-end points of the"aortic valve, as required by the software
' .. i : -I

program. The two points are, recognized in real time by the contour

detector.

The last flag bit (bit 3) is high if the coordinate is a y coordi-

nate. Because the y coordinates of the starting point and outpulse are

the last coordinates to be sent to the computer for a particular field,

• these two bits also indicate the end of the data block for this field.

For error detection, a parity- bit is assigned in the computer inter-

face to each 12-bit data and address-word. A more detailed description

is- given in the section on Error" Detection, but some general comments on

the implementation can be made at-this point. The data parity bit is not

stored in core because all 12 bits in a memory location have 'been .

assigned'a different function and the PDP-12 does not have a hardwired

error detection capability.- The parity bits are transmitted with the

data and address bits to the computer^-1/0^ multiplexer. Here new parity

bits are generated and compared with the- received parity bits. If the

received and regenerated parity bits differ, an error has occurred during

transmission. An error signal is then returned to the computer interface,

and the indicator light "error data" or "error address" is turned on,

whichever is applicable. A simple error detector code was chosen because
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the occurrence of multiple errors is highly unlikely and the angiograms

are stored on film, video tape, or disc for repeated processing in case

of consistent errors.

Before being transmitted to the computer, the x and y coordinates,

plus the assigned flag bits, are stored in a 64-word, first-in/first-out

memory, which functions as a buffer memory between the rest of the com-

puter interface and the computer. A first-in/first-out memory (FIFO) is

a read/write data storage unit that automatically keeps track of the

order in which data are entered into the memory, and reads out the data

in the same order. This buffer can perform read and write operations at

the two different rates simultaneously and completely independently.

This allows one to write new data into the memory at the same time that

the computer is reading data

from the memory, without any

synchronization between the

two. Figure 16 illustrates

the function of the FIFO as

an asynchronous interface

between the two systems. The

buffer memory is built up

with three 64 x 4-bit FIFO's.

CONTOUR DETECTOR

LBP RBP SP OP

COMPUTER INTERFACE
(EXCL FIFO)

DATA

/V

CONTROL
FIFO

BUFFER

SINGLE CYCLE
DATA BREAK

CONTROL SIGNALSI DATA w

> COMPUTER
INTERFACE

POP 12
COMPUTER

Four signals are used with

the FIFO to control the

reading and writing of data:

shift- in (SI) , input ready
Figure 16.- A FIFO is used as an

asynchronous buffer between the rest of (IR) , shift-out (SO) , and
the computer interface and the computer.
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output readys (OR). The device accepts a parallel word under control of

the shift-in input. Data entered into the FIFO immediately ripples

through the device to the outputs. Up to 64 words may be entered before

any words are read from the memory. The stored words line up at the out-

put end in the order in which they were written. A read command on the

shift-out input (SO) causes the next to the last word of data to move to

the output and all data shift one place down the stack. Input ready and

output ready signals act as memory full and memory empty flags.

Data are written into the FIFO under control of the block called

"control." During processing, a border point initiates the shift-in con-

trol signal if the input ready signal is high. When IR is low, then data

reside in the first data register. New data may not be entered until

these data have moved to the second register, indicated by IR going high.

If a border point occurs while the IR is low, the low-to-high transition

of IR initiates the write operation. An indicator light, "info lost,"

turns on when the FIFO has been filled completely and data are not read

out in time to accept new data.

After a word has been stored in the FIFO, it falls through the FIFO;

as it reaches the last register, the OR signal goes high, indicating that

there is good stable data on the outputs. This OR-transition initiates a
i?l I -

break request signal to the computer. The computer acknowledges the

break cycle by sending an address accept pulse and the break cycle signal.

According to the single-cycle data break input transfer timing diagram

(fig. 12), the data are sampled at the rising edge of the address accept

pulse, so that it can be shifted out of the FIFO after this moment. A
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new break request is immediately given if data remain in the buffer.

This .reading of data is also under the control of the block "control."

The architecture of the PDP-12 in the Cardiovascular Research

Laboratory presently allows up to 'three-data break devices in either a

three-cycle or single-rcycle--data break. The priority of a data break

device is determined by cable location. Because of the relatively high

data transmission rate,- -the contour detector interface must be assigned

preferably the next to highest priority among the data break devices; the

disk will normally have,the highest priority. The RK8 disk presently

used is a low-cost, random-access,.removable mass-storage'device. .It

uses the single-cycle data break and the transfer of data takes'. -

16.7 ysec/word. The minimum, average,and maximum access times are

2.0 + 37 msec settle time, 134 msec, and 441 msec, respectively. The disk

speed-is 1500 ±30 rpm.,. The maximum block size per track is 4k (4096

words), divided over the upper and lower surface. A complete 4k of data

can be transferred in just 80-msec. This suggests that, for future on-

line acquisition of the border coordinates at 60 fields/sec, two 4k

buffers) should be assigned in core memory as .intermediate storage.

The computed border coordinates of a minimum of eight video fields

can be stored in one 4k,.bufferji..the minimum time to fill a single buffer

is therefore 8/60 sec=133.33 msec. - The maximum time required to store

the contents of a buffer onto the. disk, move the head to the next adja-

cent track, and wait until the beginning of this new track is 120 msec.

An additional 13.33 msec is then left for software and electronic delay.

•The software routine should be designed to minimize the disk access time.
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The simple calculation above shows that real-time, on-line

acquisition of the border coordinates is possible with the present system.

However, because of the relatively tight timing tolerances, the disk

should be dedicated to the contour detector, because other disk accesses

are not possible during the acquisition of the border coordinates.

Instead of using this RK8 moving-head disk a fixed-head disk or a com-

bination of a moving- and fixed-head disk is preferred for this real-time

application, whereby the fixed-head disk is again dedicated to the con-

tour detector. A fixed-head disk has a much lower access time, making

the total system much more flexible.

The computer interface was originally designed for interfacing the

contour detector I, which did not have the capability of on-line process-

ing of the angiograms from the video disc/tape. Instead, cine frames

were processed using the light table and TV camera, allowing smaller

buffer sizes in core memory. In the present implementation, core

addresses 4000s through 5777g are assigned to store the contour coordi-

nates. As described before, the computer interface must specify the

memory address for the single-cycle data break; the block "memory address

register" provides this address at the correct moment. The address

accept pulse functions as a clock pulse for the memory address counter.

The memory address register has been designed so that two separate com-

puter buffers can be used; the addresses of the Beginning and end of each

buffer are hardwired in the'interface. In the present system, buffer I

contains core addresses AOOOe through 477?e and buffer II contains

addresses 5000$ through 5777g. This memory configuration and the data

transmission routes are shown in figure 17.
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4000g

BUFFER I

4777

COMPUTER
INTERFACE

50008

BUFFER II

SWITCH SETTING
AND ADDRESSES

'CONTROLLED BY
INTERFACE

PDP-12

57770

SWITCH SETTING'
- — —UNDER PROGRAM

CONTROL

Figure 17.- In the PDP-12, two core buffers are assigned to store the
contour coordinates. As soon as a buffer has been filled, its
contents are transferred to the disk while incoming data are stored in
the other buffer.

As soon as buffer I has been filled, the memory address counter is

set at the beginning of the second buffer and an interrupt signal is gen-

erated which initiates transfer of the contents of buffer I to the disk,

while buffer II is being filled simultaneously. In the same way, an

interrupt is given when the second buffer is full; the address counter

then returns to the first address in buffer I and the cycle repeats

itself. As soon as all the information of a particular buffer has been

transferred to the disk, the computer gives an IOP pulse that clears a

flip-flop in the computer interface. If this IOP pulse is not received

before the next interrupt is given, one of the buffers will be filled

before the old information has been fully transferred to the disk. This
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may result in loss of information, which is indicated by a front panel

light "buffer overwritten."

The assigned 512 core memory locations per buffer will, on the

average, be sufficient to store about two video fields. The last field

in a buffer is generally segmented; the remainder is put on the new

buffer. After all the selected fields have been processed, some data

remain in one of the buffers because an interrupt is not given for this

partially filled buffer. A software-generated command must then be given,

which will initiate the transfer of this last data block to the disk.

The memory address counter is preset to 4000s by the first vertical

synchronization pulse of the first processing cycle after a RESET pulse

has been generated when (1) the power to the interface is turned on or

(2) initiated from the computer console. This prevents the memory

address counter from being preset each time the "enter" switch is

activated.

If one has to process cine-film with a simple light table and a TV

camera, the film frames cannot be accurately aligned so that the discrete

points always have the same position in the defined video coordinate sys-

tem. In this case, the two discrete points and the detected contour must

be stored over a one-field period for each cine frame. The two discrete

points will be entered first and then the contour. These discrete points

are stored by changing the contour detector mode from CONTOUR to DISCRETE

POINTS: only the starting point is displayed on the video monitor in

this last mode. The starting point is then positioned at a discrete

point and the computer interface is enabled over a one-field period.

This results in the storage of the x and y coordinates of the starting
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point. Because the memory address counter is not preset each time a

• processing cycle is initiated, the discrete points and the contour are

stored in consecutive memory locations. This consecutively storing of

data also applies to all following processing cycles, until a new preset

signal is 'generated under the conditions described above.-

• When the angiocardiographic information from the video disc is used,

the positions of the discrete points need be given only once during a

ventricular study. ' '

As explained before, a-parity bit is generated in the computer

interface for the 12 address* bits. This parity bit is compared with a

newly generated parity bit at the I/O multiplexer and' the indicator light

."error address" comes on if the two parity bits differ.

Single-Line Display

As an extra feature, the "single-line display" was implemented. Its

purpose is to load the "registers x -coordinates" with the xl and x2

coordinates of the border points on a particular video line (which can be
i '

selected with dial switches) and to display this information on the front

panel. The selected line is brightened on the video monitor for visual

feedback.

When transferring the coordinates of the border points on such a

selected line to core, the most significant bit of the 12-bit data word

is made high. These coordinates can then be recognized when the contents

of core are examined to compare the computer-stored coordinates with the

coordinates displayed on the front panel of the interface. This check on

the data transmission performance was especially convenient during the

initial test periods. By positioning the selected line at the apex of
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the left ventricle, one can also check whether the number of stored x

coordinates per field equals twice the selected line number and equals

twice the difference of the stored y coordinates of the starting point

and outpulse plus two. The selected line number is defined with respect

to the video line with the starting point. It was mentioned before that

the single-line display also allows the study of left ventricular width

at a selected distance from the aortic valve during a heart cycle.

The line is selected by the operator with three dial switches

(fig. 13). Setting the switch "line count" (fig. 14) at the ON position

enables this feature. Line number one is the line with the starting

point. The selected line is brightened on the video monitor from the

horizontal synchronization pulse to the left-border pulse and from the

right-border pulse to the end of the line. This mixing occurs for each

video field, so the selected line is continuously displayed independently

of whether a processing cycle is initiated or not. If the selected line

number is higher than the number of lines traversing the left ventricle,

the line is brightened only from the outpulse to the end of the line and

the indicator light "line number too high" turns on. This light turns

off again as soon as the selected number is less than or equal to the

number of lines traversing the left ventricle.

The xl and x2 coordinates on the selected line are displayed on
j ,

the front panel for each field of a processing cycle if the "single-line

display" is enabled. At the end of the processing cycle, the displayed

coordinates are the selected coordinates of the last processed field,

which can then be compared with the core contents. This is done at the

PDP-12 console using the EXAME and STEP EXAME switches.
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Interrupts

An interrupt occurs when one of the buffers has been filled. This

signals the computer to transmit the buffer contents to the disk. The

transfer must be completed by the time the other buffer is filled with

new data. The hardware in the computer interface detects the end of

buffer condition, so the computer may be dedicated to its normal tasks

until the interface interrupts.

The general way in which interrupts are handled by the Program

Interrupt facility of the PDP-12 is described in this section. The inter-

rupt facility is described mainly from the software point of view with a

short discussion on the required hardware for the interface.

When & peripheral device requires service, it transmits an interrupt

request signal to the computer. This signal interrupts the program

currently underway and program control is then transferred to a specific

memory location, in our case, address 0000. The contents of the program

counter are stored in this location and after it has been determined

which device initiated the interrupt, servicing of the I/O device can

begin. When the service request has been completed, the interrupted

program is resumed by returning to the location specified by the previ-

ously saved contents of the program counter.

When the end of a buffer is reached, a device flag is set in the

computer interface, which causes the Program Interrupt Request bus to be

grounded. Assuming the interrupt facility was turned on before (instruc-

tion ION), an interrupt occurs and the contents of the program counter

are stored at address 0000. Address 0001 now typically contains a jump
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indirect instruction to the flag check routine. A typical program that

handles the interrupt requests is as follows:

Tag Address Instruction Remarks

/Main program

/Main program continues

/Interrupt request occurs

/Store PC (PC = 1003)

/Jump indirect to flag check routine

/Address flag check routine

/Skip if device 30 is requesting

/No - test next device

/Enter service routine 30

/Skip if device 31 is requesting

1000

1001

1002

0000

0001

0002

FLG CK 0100

Interrupt occurs

JMP I 0002

0100

IOT 6301

SKP

JMP SR30

IOT 6311

SKP

SR30 2000

3003

3004

1003

IOT 6302

ION

JMP I 0000

/Service routine for interrupting
device

/Clear device flag

/Turn on interrupt facility

/Return to main program

/Main program continues

NOTE: The interrupt facility is turned off as soon as the interrupt

request is recognized.
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In most PDP-12 systems, numerous devices are connected to the

program interrupt (PI) facility, so the routine beginning in core memory

address 0001 must determine which device requested an interrupt. The

function of the flag check routine therefore is to determine which device

requires service by sequentially checking the flags of all equipment con-

nected to the PI and to transfer program control to a service routine for

the first 'device encountered that has its flag in the state required to

request a program interrupt. In other words, when program interrupt

requests can originate in numerous devices, each device flag connected to

the PI must also be connected to the input/output skip (IDS). The IOS

«, '

facility samples the conditions of I/O flags. Each device must be able

to sample the select code, generated by the computer during an IOT

instruction and, when selected, must be able to produce sequential IOT

command pulses in accordance with the computer-generated IOP pulses.

Circuits that perform these functions in the peripheral-device are called

device selectors (DS). The format of an IOT instruction .for the device

with selection code 30s is shown in figure 18. To understand interrupt

handling, it is important to know the information flow within the

• . computer (see fig. 19).

All instructions stored in core

memory as a program sequence are read

into the memory buffer register (MB)

and the instruction register (IR) for

execution. The transfer of the opera-

tion (OP) code (the three most signifi-
Figure 18.- Format of an IOT

instruction for a device with cant bits (bits 0, 1, and 2) of the
selection code 30s.

OPERATION
CODE

IOP GENERATOR

~T T
6

1 1

3 0

1 1

X

DEVICE
SELECTION

CODE
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IOT
INSTRUCTION

BITS 0-2

12 BIT
INSTRUCTION

WORD

IR
DECODER

r*-

IOP
GENERATOR

BITS 9-11

PULSES
\

BITS 3-8

SKIP

PROGRAM
«
INTERRUPT .

REQUEST '

.CONNECTIONS
\ TO I/O
/ DEVICE

Figure 19.- Block diagram of programmed data, .transfer interface.

instruction) into the instruction register (IR) takes place and this OP

code is decoded to produce appropriate control signals. The computer,

upon recognition of the operation code as an IOT instruction, enters a

4.25-ysec expanded computer cycle and enables the IOP generator to pro-

duce time-sequenced IOP pulses as determined by the three least signifi-

cant bits of the instruction (bits 9, 10, and 11 in the MB). The IOP

pulses are generated according to the following table:

Instruction bit IOP pulse IOT pulse

11

10

9

IOP 1

IOP 2

IOP 4

IOT 1

IOT 2

IOT 4

Used primarily for but not
restricted to

Sampling flags, skipping

Clearing flags, clearing AC

Reading buffers, loading

buffers, and clearing

buffers

These IOP pulses are bussed to device selectors in all peripheral

equipment.
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Bits 3 through 8 of an IOT instruction serve as a device select

code. Bus drivers in the processor buffer the 1 and 0 output signals of

MB3_g and distribute them to the interface connectors for bussed connec-

tion to all device selectors. Each DS is assigned a select code and is

enabled only when the assigned code is present in the MB. The device

selector implemented in the computer interface is shown in figure 20.

Because the computer interface is assigned device number 30, the output

of the six-input AND gate will be high only if an IOT 630X instruction is

executed. When enabled, the device selector regenerates IOP pulses as

IOT command pulses.

,J~L

BIOP2H

8MB 06I01H

BMB 07(0)H

\

J BIOP1H

DEVICE FLAG

— v u
J°

— v "LTL> —
}

-*-IOT2

Figure 20.- Implementation of the device selector for the computer
interface (device 30g)•

The way in which the flag check routine works can now be explained.

The first instruction in this routine, the IOT 6301, will make the output
•v J - A

of the AND gate in the device selector (fig. 20) for the computer inter-

face high and, if the device flag is set, an IOT 1 pulse will occur,

which drives the SKIP bus to ground. The state of the SKIP bus is

sampled at the end of each IOT instruction. If the bus has been driven

to ground, the contents of the program counter are incremented by 1, to

advance the program count, without executing the instruction at the
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current program count. In this manner, an IOT instruction can check the

status of an I/O device flag and skip the next instruction if the device

requires servicing.

The next instruction to be executed is then the JMP SR30, that is,

a'jump to the service routine for device 30. One of the instructions in

this routine will be an IOT 6302, which generates an IOP 2 pulse for

device 30. This signal can be used to clear the device flag. One of

the last instructions of SR30 must be an ION instruction which, again,

turns on the interrupt facility. A JMP I 0000 makes the program

sequence return to the main program.

Suppose that another device wants to interrupt the program sequence

during the time that the interrupt for device 30 is being handled.

Because the interrupt facility was turned off as soon as the interrupt

request from device 30 was recognized, the interrupt bus remains grounded

until the interrupt facility is again turned on. A new interrupt immedi-

ately occurs and the contents of the program counter are again stored at

address 0000. The whole cycle repeats itself, except that the flag check

routine now skips the JMP SR30 instruction and, upon recognition of the

requesting device, enters the service routine for this particular device.

The above described program interrupt facility was used for this

particular application. In the PDP-12, a multilevel automatic priority

interrupt can be applied if one wants to reduce the central processor

overhead during the servicing of program interrupts (ref. 54). Up to 15

levels of interrupts can be accommodated with each level having a

two-word vector address.
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It is important to know when the contents of a buffer have been

, transferred to the disk. Every time the last word in a buffer is sent to

the disk, an IOT 6304 instruction is executed. In the computer interface,

a checking circuit has been implemented which receives this IOT 4 pulse.

If no IOT 4 pulse is received between consecutive interrupt requests, the

indicator light "buffer overwritten" comes on, as previously discussed. »

Error Detection

In the general description of the computer interface, it was

mentioned that single-error detection schemes are applied for the 12-bit

data and address words. The method used was to add a single parity bit.

This method is described in more detail here, along with a method for

multiple-error detection (refs. 55 and 56).

It is important that at least a single error be detected so that

processing can be repeated if it occurs. This is always possible since

the angiograms are stored on film, video disc, or tape. With the high

reliability of the integrated circuits and the short cable length over
!

which the information is transmitted (<6 m), it is very unlikely that

multiple errors will occur simultaneously. Adding an extra bit, the

parity bit, to a word allows the detection of an error that affects only

a single bit or an odd number of bits of the word. Generally, the error

can be caused by hardware failures or noise on the transmission line.

The addition of a parity bit will guarantee that the minimum

distance between any two words is at least 2. Generally, the following

statement is valid: any set of binary words with minimum distance

between words of at least 2 can be used as a single-error detecting code,

and any single-error detecting code must have a minimum distance between
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any two code words of at least'2. The distance D(x,y) between two words

x and y is' the number'of coordinates for which x and y are different,

as defined by Hamming (ref. 57). -

' - • The information to be placed into the parity bit position is chosen

so that the "parity word," consisting of the original system word plus

the parity bit', contains an odd number' of ones (odd parity) or an even

number of ones (even parity). The function of a parity generator is to

examine the system word and to determine the logic level for this added

parity bit. Once the parity has been included, the "parity word" can be
. , i ' , _

examined after any transmission to determine if a failure or error has
f

occurred. The parity detection circuit (parity checker) generates a new

parity bit for the received 12 bits and, if the transmitted and new

parity bit differ, an error has occurred. The system control is then

informed that the system has not functioned properly. This parity scheme

.will detect an odd number of errors, but fails if an even number of
3 * ", I '

errors occur.

In more error-prone situations, such as transmitting over a larger

distance or in a noisy environment, better schemes can be used. Although

this was not done in the implemented computer interface, one of the most
' * -. i

familiar schemes, the modified Hamming single-error correction and double-
i *' ' , . • J * - < ' ) t ~ l ' ? i 1 r , r ' ~,r ^ - ,.*

error detection scheme, will be described.
* * • . > j

The Hamming code for single-error correction is first described.
j

Single-error correction requires that redundant information be added to
1T ,

the message information so" that the bit number in error can be identified.

The necessary and sufficient condition for any set of binary words to be

a single-error correcting code is that the minimum distance between any
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pair of words be 3. In the Hamming parity code, the redundant bits are

called Hamming parity bits. The number of extra bits that must be added

is found from the inequality 2^ _> m + k + 1, where k is the number of

Hamming parity bits and m is the number of information bits. The total

number of bits is then n = m + k and the redundancy of the code is

defined as R = n/m = 1 + k/m.

Figure 21 is a block diagram of a Hamming code single-error

correction system for a 12-bit message word and the 5 required parity

bits.

BINARY CODE OF
TRANSMITTED BIT

IN ERROR

Figure 21.- Block diagram of a Hamming code single-error correction
system.

The Hamming code generator calculates the 5 Hamming parity bits -

PIG, P2G, PAG, P8G, and P16G (letter G indicates the parity bits calcu-

lated by the parity generator) from the 12 message bits. The parity bits

are usually placed in the bit positions corresponding to binary powers

since they then enter into only one parity bit, making the formation of

parity bit equations very straightforward. The 12 message bits are then
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denoted M3, M5, M6, M7, M9, M10, Mil, M12, M13, M14, M15, and M17. The

exact manner of generating the Hamming parity bits from the 12 message

bits is given in figure 22.

PIG P2G M3 PAG M5 M6 M7 P8G M9 M10 Mil M12 M13 M14 M15 P16G M17

XX X

X X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

PIG = M3 ® M5 ® M7 ® M9 ® Mil ® M13 ® M15 ® M17

P2G = M3 « M6 ® M7 ® M10 ® Mil ® M14 ® M15

P4G = M5 ® M6 ® M7 ® M12 ® M13 ® M14 ® M15

P8G = M9 ® M10 ® Mil ® M12 ® M13 ® M14 ® M15

P16G = Ml 7

Figure 22.- Parity check table for a single-error correcting code with
12 message bits and 5 parity bits.

In figure 22, the X's placed in the table indicate which of the

message bits must be examined to generate the corresponding parity bit.

The necessary and sufficient conditions for a parity check table to

correspond to a single-error correcting code are that each column of the

table be distinct (no repeated columns) and that each column contains at

least one entry.

The Hamming parity detection circuit for this single-error correc-

tion system re-examines the input message bits exactly as the generator

did. The parity bits generated at the receiver - P1R, P2R, P4R, P8R,

and P16R - are then compared with the transmitted parity bits PnG (where

n represents 1, 2, 4, 8, and 16 for this example). Each combination of

parity bits (e.g., PIG transmitted and P1R received) is compared via an
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Exclusive OR circuit. The result of this comparison -forms a binary word

that indicates the bit position of any- single bit in error.

If a^double error occurs, a correction is carried out according to

the above explained scheme, but the wrong code word will be .produced.

•For example, suppose that message bits M3 and M5 were, in error; the

• regenerated parity bits P2R and P4R would then be different from the

., received, parity bits B2G .and P4G,, indicating that message bit M6 was in

error. By adding one additional parity bit over all the bits, one

obtains the single-error correcting and double-error detecting capability;

this is called the modified Hamming code, having a minimum distance of 4.

Referring to figure 22 and denoting the generated overall parity bit

PCS, this yields

PCS = PIG ® P2G ® M3 ® P4G ® M5 ® M6 ® M7 ® P8G ® M9 ® M10 ® Mil ® M12 ® M13 ® M14 ® M15

® P16G®M17

Any single error in the resulting code will result in the same parity

check violations as without PGS and, in addition, will violate the PCS

parity bit. Any double error will not violate the PGS parity check, but

will violate some of the PIG, P2G, P4G, P8G, or P16G parity bits, thus

indicating that a double error has occurred.

The possible situations occurring when the modified Hamming code is

used can be summarized as follows:

(1) If all equivalent G and R parity bits are the same, then there

is no error.

(2) If for only one n the parity bits are unequal, then this

parity bit is in error.
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(3) If for more than one n the parity bits are unequal and

PCS ̂  PRS, then a single error has occurred and the outputs of the

Exclusive OR gates give the binary word of the bit in error.

(A) If for more than one n the parity bits are unequal and

PCS = PRS, then a double error has occurred.

Therefore, a code that detects double errors, as well as corrects

single errors, must consist of binary words having a minimum distance

of 4.
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CHAPTER 5: CONTOUR DETECTOR, PROTOTYPE II

Results with the contour detector prototype I were very encouraging.

In many cases, rather accurate left ventricular outlines were obtained.

An accurate outline is defined as one that coincides with the outline

drawn by an experienced investigator. For these experiments, left ven-

tricular cineangiograms were used. The film is placed on a light box and

can be manually advanced with a film transport. The video camera is

mounted vertically above the light box.

The outlines were generated on a frame-by-frame basis, whereby

manual readjustments of the parameters were often necessary, especially

the a and Vc parameters for the dynamic reference level. Also, limited

border excursions from the direction perpendicular to the scan lines were

only allowed because of the applied expectation window principle. The

excursions are determined by the selected expectation window widths.

However, the direction along a border is not everywhere the same. It is

certainly very different at the mitral valve from the rest of the left

border, if we take only this side as an example. This can result in

inaccuracies, especially if the expectation window width is chosen fairly

narrow. Because the left ventricle also makes a rotational movement

during a heart cycle, the center of the expectation window must be deter-

mined in a way less dependent upon the vertical direction. With a real-

time, on-line working contour detector as goal, it was obvious that

improvements had to be found for the expectation window and dynamic

reference level principles.

Because of the above mentioned reasons, a totally new contour

detector has been built. Figure 23 is a block diagram of the prototype II
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contour detector. Although some of the basic principles used in the

prototype I system have been applied in a more or less revised form again

in the new system, the implementation of it has been changed completely.

The prototype I was mainly based on analog circuit design with the expec-

tation and sample-and-hold windows determined by time delays generated

with monostable multivibrators, which are sensitive to temperature and

power supply changes. 'The new system is based on a much more digital
I

approach; using a 50-MHz clock, the border points, expectation, and

sample points are determined in a 12-bit format. This approach allows a

relatively easy and accurate correlation of video lines (chapter 6) and

fields (chapter 7) and an adjustment of expectation window widths accord-

ing to local brightness levels (chapter 10) which otherwise would not

have been easily achievable. Whereas previously two sample-and-hold

circuits per border side were used, in the new system three track-and-

hold circuits per border side are used, allowing some additional adjust-

ments of the reference level in case of irregular border signals.

With the border coordinates available in a 12-bit format in the

contour detector, the design of the computer interface can also be simpli-

fied. The computer interface was originally designed for use with the

first prototype system, whereby the x coordinates are calculated in the

interface. For subsequent computer processing of the obtained data, the

x coordinates need only be given in 8 bits. Therefore, the four least

significant bits of a prototype II x coordinate can be deleted for the

computer use.

Theoretical derivations and actual implementations of the system are

discussed here and in the following chapters. In the remainder of this
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chapter, the analog preprocessing circuitry is discussed. This part of

the system is represented by the functional blocks in the upper part of

the block diagram (fig. 23) - more specifically, the blocks "amplifier

and sync stripper," "1-MHz low-pass filter Bessel," "video clamp," as

well as the summation amplifier and the 400-nsec "delay line."

Video Analog Preprocessing

The actual implementation of the analog preprocessing circuitry is

given in figure 24. The input video signal is assumed to be a standard

video signal with an amplitude of 1 V including the negative going syn-

chronization pulses (ref. 58). Because the synchronization pulses in the

video signal have no important function in the border recognition algo-

rithm, it is preferred to have a video signal without synchronization

pulses at the input of the analog comparators. The synchronization

/ x
pulses therefore are stripped off in the sync stripper. However, before

i

this operation can be done, the video signal must be inverted and hard-

clamped. The input video signal is inverted and amplified in OP AMP 1,

which is an ultrafast FET input operational amplifier, extremely useful

for video applications. Ideally, the gain of the input amplifier is

given by -Rp/R^; RF is adjusted so that the amplitude of the signal from
\

the blanking level to the reference white level is 1 V.

To restore the dc level in the video signal, the output signal of •

OP AMP 1 is hard-clamped. This clamping occurs during the back porch of

the line synchronization pulses. Figure 25 is a detailed drawing of the

video signal during the horizontal .synchronization pulse.

Transistor Q3 is the clamping transistor that will be saturated when

a clamp pulse turns it on. The collector is grounded so the video signal
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MAX.
115 Msec

f = 0.714 ± 0 1 V
r, = 0 286 NOMINAL

BLANKING LEVEL

FRONT PORCH

HORIZONTAL
SYNC PULSE BACK PORCH

475
t.5 psec

Figure- 25.- Standard video signal with horizontal synchronization pulse.

will be clamped at a Vce sat voltage drop above ground. The clamp

pulses are derived from the horizontal synchronization pulses.

OP AMP 2 functions as a high input impedance buffer for the clamped

video signal. From the output of this buffer," the signal branches over

two different routes. Following the upper route, the synchronization

pulses are ..stripped off in a precision limiter, implemented with opera-

tional amplifier OP A~MP 3. (A detailed analysis of the precision limiter

i i
-is given in appendix B.) A convenient level to strip off the synchroniza-

tion pulses is.at 0.1 n or approximately 30 mV below the blanking level

(fig. 25). It is then still possible to recognize visually the back

porch, which is important because the stripped video signal is again

clamped at the inputs of OP AMP's 7 and 8. Stripping at a level below

the blanking level also assures that a slight drift in the stripping
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level, by whatever reasons, will not affect the information portion of

the video signal.

The output signal from the precision limiter is connected to

OP AMP's 4 and 5. OP AMP 4 amplifies the signal by a factor of +4 and

OP AMP 5, by -4. These positive and negative amplifiers are needed so

that cineangiograms (on negative of conventional film) can be used, as

well as the information stored on video tape or disc. The amplification

by a factor of 4 is necessary because a video signal with an amplitude of

2 V is desired at the comparator input. The signal is attenuated by a

factor of 2 at the filter output because of the termination. The true

format from the video disc shows a dark left ventricle against a bright

background, while the cineangiogram provides a bright left ventricle

against a dark background. The different video signals for a horizontal

TV line traversing the left ventricle are given in figure 26. Fig-

ure 26(a) shows the signal from the video disc, while figure 26 (b) shows

the signal from the TV camera scanning a cineangiogram (negative).

LEFT VENTRICLE

WHITE

BLACK

(a) Signal from the video disc.

HORIZONTAL SYNC PULSES

(b) Signal from the TV camera
scanning a negative cineangiogram.

Figure 26.- Video signal ot a horizontal line traversing the left
ventricle.
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The circuitry, which detects the left ventricular border, should

always see the same format. Rather arbitrarily, but mainly because this

was used in the first prototype of the contour detector, the brightened

ventricle against a dark background, as provided by the negative of con-

ventional film was defined, as the normalized format for the detection

circuitry. Comparing the two formats in figures 26 then clarifies that

inverting the video signal from the disc and clamping it at approximately

+2 V will result in the same format for the detection algorithm. Fig-

ure 27(a) shows the video signal from the TV camera, clamped at ground

and with the horizontal sync pulses stripped off. Figure 27(b) gives the

final format for the video disc signal. In both cases, the left border

is now- characterized by a rising edge and the right border by a trailing

edge. • The video disc signal is inverted with OP AMP 5. With the switch

at the input of the low-pass filter, the inverted or noninverted signal

is selected.

CLAMPED
AT +2V

LEFT VENTRICLE

LEFT VENTRICLE

CLAMPED AT GROUND STRIPPED HORIZONTAL
SYNC PULSES

(a) Processed signal from TV camera. (b) Processed signal from video disc.

Figure 27.- Normalized video format for the detection algorithm.
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The used filter is a low-pass filter with a cutoff frequency at

1 MHz, it is linear phase (Bessel function), and has a characteristic

impedance of 500 fi. The reasons for selecting this type of filter are

described in appendix C. It is shown that frequencies above 1 MHz do not

contain relevant border information so the signal/noise ratio can be

improved by low-pass filtering at 1 MHz. Also, for video applications,

the filter should have a pulse or step response with low overshoot,

requiring a linear-phase-type filter.

This low-pass filter is terminated with its characteristic impedance

and followed by a buffer. This buffer, OP AMP 6, does not load the fil-

ter and functions as a voltage source for the next clamp circuit. Tran-

sistor Q6 is the clamping transistor and the video signal is clamped at a

Vce sat voltage drop above ground for the video signal from the TV

camera or at approximately +2 V for the video disc signal. The required

clamping level is again selected with a switch. Because the filtered

video signal is delayed over approximately 300 nsec, the clamp pulses for

transistor Q6 must be delayed over the same time period. These delayed

clamp pulses are again derived from the horizontal synchronization pulses.

Operational amplifiers OP AMP's 7 and 8 function as buffers; the

output signals are the input signals to the comparators. OP AMP 7 is the

buffer for^ the left-border comparator and OP AMP 8, for the right-border

comparator.

In the lower route, the buffered video signal from OP AMP 2 is

delayed over 400 nsec in a delay line to compensate for the total delay

of the low-pass filter and the logic circuitry involved in the contour

detection. This delay line is necessary because the detected contour
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points and other control signals must be mixed into the video signal at

the correct moments.

The MC 1545 is a gated, two-channel, differential amplifier used as

a video switch. With the gate level high, the output is connected to

channel A and with the gate signal low, to channel B. The open-loop gain

of the MC 1545 is typically 18 dB. For a contour point or control signal

to be mixed into the video signal, the gate level is made low, resulting

in a "white" level pulse at the output.

The closed-loop configuration of OP AMP 11 and the LH0002 current

amplifier functions as a -2 amplifier with a drive capability for 75 £5

coaxial cable. The "video out" signal has the standard format of 1-V

peak-to-peak, including the synchronization pulses, and is applied to a

video monitor to display the original x-ray picture with the detected

contour points and/or control signals superimposed.
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CHAPTER 6: LINE EXTRAPOLATION PRINCIPLE

The vital role of the expectation window principle in the left

ventricular contour detection is explained in chapter 3. In the contour

detector prototype I, the center of the expectation window on video line

(n+1) is defined as having the same horizontal position as the last

detected border point on line n - defined as the zeroth-order line

extrapolation principle. The basic limitations of this principle are

that (1) only limited excursions from the direction perpendicular to the

video scan lines are allowed and (2) the center of the expectation window

is generally not a good approximation of the next border point.

In general, it is advantageous to make the width of the expectation

window as narrow as practically allowable to limit the excursions from

the actual border at those places along the border, where forced border

points are generated (e.g., because of intervening structures). On the

other hand, relatively wide expectation windows are often necessary

because the actual border may change appreciably from line to line, as at

the mitral valve. Therefore, the selected width of the window must

always be a compromise.

Clearly the zeroth-order line extrapolation principle works best if

the longest chord is about perpendicular to the scan lines. When using

cine film and a rotating light table, this orientation can always be

realized. To analyze a cine film over a complete cardiac cycle, the sys-

tem is set up properly -with the longest chord about perpendicular to the

scan lines at diastole, after which the film can be advanced over the

entire cycle. Although the left ventricle may rotate over as much as
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±20° during a cardiac cycle, additional rotations of the film to

compensate for this change in angular position is generally not necessary.

For left ventricular studies, the angiograms mostly are taken in the

RAO projection, in which the foreshortening of the longest chord is mini-

mal and the spinal column does not overlap the left ventricular shadow.

However, to process the stored images from video tape or disc, the orien-

tation is such that the longest chord is not perpendicular to the scan
• .-'_ .1 ; i j

lines, but may have an angle between 20° and 60°, with the direction

perpendicular to the scan lines. Since the video scan direction is fixed

and the analog information cannot be rotated once it is in video format,

the preferred orientation can be obtained only by either rotating the TV

camera on top of the image intensifier or rotating the patient with

respect to the x-ray system. Because of vibrations, the image intensi-

fier must be securely in position when the cine camera is used. However,

a left ventricular study has been done at Ames with the image intensifier

rotated over the required angle without any visible degradation. Despite

these possible solutions for rotating the angiograms, there is one impor-

tant objection against applying this in a research or clinical environ-

ment. During a catheterization, the cardiologist depends a great deal on

the video images to properly insert the catheters. Rotating the image

would therefore result in orientation problems. , ., ( , c

Assuming that the orientation of the video disc stored angiograms

has not been optimized, relatively wide expectation windows must be

allowed for the zeroth-order line extrapolation principle. Also, the

center of the expectation window generally deviates more from the actual

margin compared with the vertical orientation. It is clear that an
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improved expectation window principle must be found so that the center

of the expectation window is a good approximation of the actual border

point, independent of orientation.

The left ventricular contour being a smooth continuous function, the

position of the border point on line (n + 1) can be approximated from the

positions of detected border points on previous lines. It will be shown

in the following section that this can be achieved by linearly extrapo-

lating the border positions on lines (n - 1) and n. The zeroth-order

extrapolation principle is also analyzed and both methods are compared.

First-Order Line Extrapolation Principle

Denote the left ventricular border function as g(nT) , where n is

the video line number and T is the line period (63.5 ysec) . The func-

tion g(nT) is a measure for the distance from the horizontal sync pulse

to the border point on line n. Using the Taylor series, the function

value g[(n + l)T] can be written as

g[(n + l)T] =g(nT) +T • S + T 2 • Sn + . . . + Tn •

where Rn is the remainder of the Taylor series. Since the contour is a

smooth continuous function and the distance T between video lines is

small, this series expansion can generally be truncated after the first

two terms, resulting in the linear function:

g[(n + l)T] = g(nT) + T • g« (nT) (3)

The derivative at t = nT can be approximated with

g'(nT) sB(°T)
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Substituting equation (4) into (3) gives

= 2g(nT) - (5)

This approximation of the position of g[(n + l)T] is then defined as

the center of the expectation window on line (n + 1), denoted by

h[(n+l)T]; that is,

h[(n + l)T] 4 2g(nT) -g[(n-l)T] (6)

This is referred to as the first-order line extrapolation principle.

Once the border points on lines (n-1) and n are known in binary format,

the center of the expectation window on line (n + 1) can be calculated

using equation (6). The determination of h[(n+l)T] from g(nT) and

g[(n-l)T] is illustrated in figure 28. The widths of the left- and

right-hand sides of the expectation window are again denoted EL and e^,

respectively; in the actual system, these widths are expressed in a 4-bit

binary number.

LEFT VENTRICULAR
BORDER

~u

HORIZONTAL
SYNC PULSES

(n-1)

(n+1)

SCAN LINES

EXPECTATION
WINDOW

Figure 28.- The center h[(n + l)T] of the expectation window on line
(n + 1) is determined as a linear extrapolation from the border points
g(nT) and g[(n-l)T] on the previous lines n and (n-1), respectively.

In the implemented system, equation (6) is applied for both line

extrapolation principles. Simply substituting g(nT) for g[(n-l)T] at
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the time of calculation results in the position of the center of the

expectation window according to the zeroth-order line extrapolation

principle.

It was discussed in chapter 3 for the zeroth-order line extrapola-

tion principle that straight-line approximation results in those areas

where forced border points are generated at the beginning or end of the

expectation window. This occurs when the video signal does not cross the

reference level within the expectation window. The slope of the straight

line is determined by the selected widths of the expectation window. It

is certainly important to analyze what the maximum excursions from previ-

ous border points can be for the first-order case.

For simplicity, it is assumed that the expectation window is

symmetrical about the center with 'half the width denoted e (e > 0). The

maximum possible excursions can then be calculated by solving for g(nT)

from

|h[(n + l)T] -g[(n + l)T]| <e for all niO (7)

Substituting equation (6) into (7) gives

|2g(nT)-g[(n-i)T]-g[(n + l)T]| < e (8)

or

|{g(nT) -g[(n-l)T]}-{g[(n + 1)T] -g(nT)}| <e (9)

Define

A(nT) £ g(nT) -g[(n-l)T] " ' '"'"''' (10)

so that

A[(n+l)T] = g[(n+l)T] -g(nT) (11)

Substituting equations (10) and (11) into equation (9) yields

|A[(n + l)T] -A(nT)| < e , " (12)
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The A functions can be approximated with

A[(n + l)T] * g'[(n + l)T] • T (13)

and

A(nT) ~ g'(nT) • T (14)

so that

-g'(nT)| < (15)

Using the same approximation as in equations (13) and (14) , we can write

g'[(n + l)T] -g'(nT) = g"[(n + l)T] • T (16)

Substituting this into equation (15) gives

|g"[(n + l)T]| < -̂  (17)
I2

or, to simplify the calculations,

|g"(nT)| < ̂ ,' n >.+! (18)

;

We are interested in the functions that satisfy this bound, that is, the

functions for which

|g"(nT)| =-^- , e > 0 (19)
Tz

We will now distinguish two cases:

(1) The forced border points are generated at the en'd of the expec-

tation window. The general solution to equation (19) can then be written

as

gR(nT) =~ • (nT)2 + C! • (nT) + C2 , (20)

where C\ and C^ are constants.

(2) The forced border points are generated at the beginning of the

expectation window, which yields

gL(nT) = - -^2 ' (nT)
2+C3 • (nT) + C,, (21)

with €3 and C^ constants^, ̂
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Equations (20) and (21) are the general equations for a parabola.

Consider the case with initial conditions: g(-T) = g(0) =0. In the

actual system, a function g(nT) = 0 corresponds to the border position

at the beginning of a scan line. However, in this chapter, we consider

only position changes with respect to an initial condition. Taking zero

as initial condition does not make the solutions less valuable. Substi-

tuting these conditions into equation (20) yields

GI = ̂  ; c2 = o (22)

The function of the maximum excursions due to forced border points at the

end of the expectation window is then

gR(nT) = "
E(; + 1) (23)

Substituting the initial conditions into equation (21) yields

Cs = ~ ZT ; Ctt = ° (24)

so that the function of the maximum excursions due to forced border

points at the beginning of the expectation window is

gL(nT) = - H£i|±ll (25)

These functions are plotted in figure 29 with solid lines. Note that the

time axis is now vertical and the function value horizontal, in accord-

ance with the TV scan. Assume now that the initial conditions are

g(0) =0 and g(-T) =+e , e > 0

Substituting these initial conditions into equation (20) gives

Ci = - ̂ r and C2 = 0 (26)

so that

gR(nT) =
 n£(n-1) (27)
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-9e -8e -7e -6e -be -4e -3e -2e 2e 3e 4t 5e 6e 7e

. _.
gL(nT) = -

9L(nT)=.n£>±3) -T) = _ne_^1,

I 4T--

U 9R(nT)
"1 ne (n-1)

Figure 29.- Assuming a symmetrical expectation window with half the width
denoted e, the functions indicate the maximum possible excursions
from different initial conditions.

and substituting into equation (21) gives

C3 = - and = 0

so that

(28)

(29)

These two functions are also plotted in figure 29 with dashed lines.

With initial conditions g(0) = 0 and g(-T) = 2e, the functions are

, , _ ne(n- 3)
gR(nT) -

and

gL(nT)
:(n+5)

(30)

(31)

These two functions are also plotted in figure 29. When e-^ is unequal

to e_, the maximum excursions can easily be derived by substituting eL

and ET>, respectively, for e in the derived formulas.
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Zeroth-Order Line Extrapolation Principle

For the zeroth-order line extrapolation principle, the center

h[(n + l)T] of the expectation window on line (n + 1) is equal to the

border position of g(nT) on line n, delayed over one line period

(fig. 30). In border coordinates, this can be written as

= g(nT) ' (32)

LEFT VENTRICULAR
BORDER

HORIZONTAL
SYNC PULSES

SCAN LINES

EXPECTATION
WINDOW

Figure 30.- The center h[(n+l)T] of the expectation window on line
(n+1) is defined as having the same horizontal position as the last
detected border point on line n.

It was discussed in chapter 3 that the maximum excursions from previous

border points are given by straight lines, the slopes of which are deter-

mined by the expectation window widths. ,,In a way, similar to the analy-
1 *

sis for the first-order case, the maximum possible excursions can be

derived mathematically by solving for g(nT) from

|h[(n + l)T] -g[(n + l)T]| <e, ' for all 'n>.0'-'~f a (33)

assuming a symmetrical expectation window with half the width denoted e

(e > 0) . Substituting equation (32) into (33) gives

|g[(n+l)T] -g(nT)| < e (34)

Applying equations (11) and (13)
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A[(n =g[(n - g(nT) * g1 [(n

yields

|g'(nT)| <

The maximum excursions are obtained by solving

|g'(nT)

The general solution can be written as

g(nT) =±-'(nT)+C with e>0

(35)

(36)

(37)

This is a straight line as previously mentioned. For the initial condi-

tion g(0) = 0, the solution is

g(nT) = ± ̂ -(nT) (38)

This function is plotted in figure 31. The function g(nT) is now

independent of the value of the border function at t = -T. However,

-5e •9<nT)

Figure 31.- Assuming a symmetrical expectation window with half the width
denoted e, the functions of maximum possible excursions are given by
straight lines with slope a = ±e/T.
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because of the restricted expectation window excursions, the possible

value of g(-T) must be between +E and -e if g(0) =0 is to be true.

The arrows in figure 31 indicate the maximum allowed changes in border

positions from t =-T to -t-T. Equation (38) can also be written as

g(nT) = onT (39)

where

o ± ± f (40)

In figure 31, the time axis is vertical and the function values are

plotted horizontally, as for a video display. For o = 0, a vertical line

in the video image results and for a=±°°, a horizontal line results.

For a given sample period T, the slope a is a linear function of e.

A greater e means that the system will be able to follow segments of

the left ventricular border, which are more horizontally oriented; how-

ever, a greater E also increases the possibility of tracking an

intervening structure.

The left- and right-hand sides of the expectation window are gener-

ally not equal. Distinguishing e-r and e™, the functions for the maximum

possible excursions are

gL(nT) = - -y.(nT) (41)

and

gR(nT) = +-y'(nT) (42)

Comparing the functions in figures 29 and 31, which have the same e,

shows that the zeroth-order approximation is restricted in its ability to

track rapidly changing border functions. For a particular degree of

excursions from previous border points, smaller window widths can be

allowed using the first-order line extrapolation principle.
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Note that the maximum excursions of the border functions for systems

with other values of the sampling period T can easily be derived from

figures 29 and 31. The plot for another value of T follows from these

figures if they are compressed vertically or expanded with unchanged e

axis. This will be the case for higher and lower resolution systems,

respectively.

The step and ramp responses of both principles are described in the

next section, using the z transform.

First-Order Line Extrapolation Principle in the z Domain

Transfer function- Equation (6), h[(n+ 1)T] =2g(nT) - g[(n - 1)T], can

be transformed (assuming initial conditions to be zero) into the z

domain as

zH(z) = 2G(z) - z~lG(z) (43)

This results in the transfer function

H(z) ^1 . 2z-l
G(z) z" z (44)

Note that 2g(nT) -g[(n-l)T] is calculated on line n, but is used for

line (n+1). This one-line period delay is taken care of with the factor

1/z. Figure 32 is a block diagram of this first-order approximation

system.

G(z)
2z-1

H(z)

Figure 32.- Block diagram of the first-order line extrapolation
principle in the z domain.
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Step response- If the border position changes abruptly from one line

to the other, the centers of the expectation windows can be determined by

calculating the step response. Let G(z) = z/(z-l) (unity input step),

then

H(z) =
z-1 z

This function is plotted in figure 33.

I,
G(z)
H(z)

= 2Z (45)

2--

MINIMUM

H(z)

G(z)
MINIMUM

4-
-T 0 T 2T 3T 4T 5T ^l

Figure 33.- Step response, first-order line extrapolation principle.

A 100 percent overshoot occurs in the positioning of the centers of

the expectation windows. There are other approximation methods which

give a smaller overshoot, but these have the disadvantage that there is a

finite error (delay) in the ramp response (ref. 51). These methods are

also much more complex to implement. " ' • - . . . , • •

In the calculation of this step response, it is assumed that the

actual border points are detected, which means that one must allow for

the left- and right-hand sides, e, and ER, respectively, of the expecta-

tion window, a minimum width equal to the step in the function ,g(nT).
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This is because g(nT) represents the detected contour and not the actual

border. If it is assumed that the expectation window widths satisfy

these minimum requirements, the detected border equals the actual border.

If the widths EL anc* ER are smaller than the minimum required widths,

forced border points are generated, resulting in less overshoot

(described in more detail in the section on forced border points).

u ' The assumption of the expection window widths satisfying the minimum

~!

required widths must be made for all calculated step and ramp response in

this chapter.

' Ramp response- In an identical way, the ramp response can be deter-

mined in case the border positions change linearly. The ramp function

with slope Y i-n tne z domain is

Tz

Therefore,

H(z) =
<,z -

as shown in figure 34.

G(z) =

YTz 2z-l =
- n2 ' 9

(z-D2
(46)

(47)

H(z)

G(z)

0 T 2T 3T 4T 5T

Figure 34.- Ramp response, first-order line extrapolation principle,

98



The minimum required one-sided width of the expectation window is

eR = -yT, as indicated in the figure. In this case, there is no

requirement for e^.

Zeroth-Order Line Extrapolation Principle in the z Domain

Transfer function- In this case, the center of the expectation

window on line (n+ 1) is simply determined by delaying the position of

the border point on line n by one line period. The transfer function
4 '

is therefore

ti ̂  o / .L / / o \

GOO = z (48)

The block diagram is given in figure 35.

G(z) H(z)

Figure 35.- Block diagram of the zeroth-order line extrapolation
principle in the z domain.

Step response- The response to a step function is a delay over T:

= ,-1 j-z-2 + z-3 + < , , (49)= z
^ ' z z-1

This step response is shown in figure 36. For this zeroth-order approxi-

mation, no overshoot occurs in the position of the center of the expecta-

tion window. As explained before, this calculation of H(z) is valid

G(z)

H(z) H(z)

j

i

G(z)
MINIMUM
eR

— 1 1 1 1 1 1 1
0 T 2T 3T 4T 5T *"l

Figure 36.- Step response, zeroth-order line extrapolation principle.
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f

only for a minimum width eR for the right-hand side of the expectation

window equal to the step in the actual border function. If the selected

£R is less than this minimum required width, forced border points are

generated and the final value is reached under a straight line, the slope

of which Ts determined by eR. For the assumed positive step, there is

no requirement for EL-

Ramp response- The response to a"ramp function G(z) =y[Tz/(z - I)2]

is

H(z) = T Z 2 • — = yT(z~
2 + 2z~3 + 32~'4 + 4'z~5+ . . .) (50)

as shown in figure 37.

G(z) H(z)

VERTICAL ERROR yJ

H hH 1 1-
2T 3T 4T 5T

! T

Figure 37.- Ramp response, zeroth-order line extrapolation principle.

The "vertical" error can be calculated by applying the formula for

-the'final value of the error function. 'The error function F(z) is

F(z) = H(z) - G(z) = G(z) (51)

The vertical error is then
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lim -5 F(2) = lim 2— • ^z . — ̂  = -YT (52)

The minus sign indicates that, for the ramp function, the centers of the

expectation window are always delayed with respect to the border points.

This delay is linearly dependent on the slope of the ramp.

The required minimum width eR is again equal to yT, the same

requirement as for the ramp response of the first-order expectation
•. - -vr; t •'« ' • .r -

window principle.

Effects of forced border points on step and ramp responses- If no

border points are detected within the expectation window, forced border

points are generated at one side of the window (as explained in the

description- of the contour detector prototype I) . The effects of the

applied forced border points on both expectation window principles are

determined in this section.

Effects on first-order line extrapolation principle- Consider the

case in which there is a step change in the actual border and the width

ER is less than the required width as determined in figure 33. Forced

border pulses are then generated at the end of the expectation window.

The resulting positions of the border points and the centers of the

expectation windows are shown in figure 38. In figures 38 through 41,
LOJO>. . iq ..Oi ,
the detected border points are indicated by X's and the resulting

centers of the expectation windows by dots. ". -.' i1

The overshoot of the centers of the expectation windows in figure 38

is less than in figure 33, where ER >. amplitude step. However, with

less overshoot it takes longer to settle down. For a ramp function, the

situation is illustrated in figure 39. Again some over- and undershoots
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of the centers of the expectation windows occur, but the actual border

is fairly well approximated.

• CENTER EXPECTATION
WINDOW

1

MnT)
9(nT)

/
-/

-T

1

f̂
/

/

0

y
/

^̂ i

\
i

\

/

,/
'/
x *
k /

X DETECTED CONTOUR POINT

(

r- i.

^

eR

T 2T 3T 4T 5T * *

1 ,

Figure 38.- Step response, first-order line extrapolation principle with
ER less than step in border function.

MnT)
9(nT)

-T 0

ACTUAL BORDER

3T 4T 5T 6T 7T 8T 9T

Figure 39.- Ramp response, first-order line extrapolation principle with
ER < yT.
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h(nT)
g(nT)

4! It ACTUAL BORDER

' "L—.2T, _3T
H 1

-. t

Figure 40.- Step response, zeroth-order line extrapolation principle with
£R less than step in border function.

MnT)t
9(nT)

ACTUAL BORDER

:L 2T 3T 4T 5T 6T 7T 8T 9T

Figure 41.- Ramp response, zeroth-order line extrapolation principle with
£R < YT. .

Effects on zeroth-order line extrapolation principle- The step

response is shown in figure 40. The scale used is the same as in

figure 38. There is no overshoot in the positions of the centers
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of the expectation windows. So long as forced border points are

generated, the centers are on a straight line, the slope of which is

determined by the width ER.

For a ramp function the situation is illustrated in figure 41. The

contour is now approximated with a straight line and the distance between

! .
the actual and forced border points increases with time. A comparison of

figure 41 with figure 39 clarifies the improved tracking capability of
'<., " . ! . ' 'I ', ) > ) c ; '- J ' . ~: ', j : r;, , _• .
the first-order line extrapolation principle.

104



CHAPTER 7: FIELD EXTRAPOLATION PRINCIPLE

The fact that the ventricular contour is a smooth, continuous

function is used in chapter 6 to determine the center of the expectation

window as a linear extrapolation from the border points on the two previ-

ous lines. The spatial movement of the left ventricle during a heart

cycle is also a smooth, continuous function with time (ref. 15), suggest-

ing that the last or last two fields are used as an approximation for

the border in the current field. This will be especially advantageous

for detecting the contours during systole when contrast is usually very

low. At those instances, the human eye often is not capable of detect-

ing the correct location of the margin. The investigatof then approxi-

mates the outline as accurately as possible by scanning the whole cycle

or part of the cycle a few times to ascertain the spatial movement of

the ventricle. He then returns to the low-contrast frames and, with the

information stored in his own memory, he draws the outline where he

thinks it should be. Although a human being has a much greater capabil-

ity than a relatively simple machine of extracting the relevant informa-

tion from a series of pictures and of using this to approximate the next

picture, applying the information of only the last two fields is a first

approximation to this complex problem.

Similar to the zeroth- and first-order line extrapolation principles

for the determination of the center of the expectation window from the

border points on previous lines in the same field, we can define

zeroth- and first-order field extrapolation principles using correspond-

ing border points in previous fields. The zeroth-order field

extrapolation principle then considers only the last field.
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Applying both extrapolation principles simultaneously, the center

of the expectation window hm[(n + l)T] on line (n +1) in field m is

then defined as the average .position 'of the centers of the expectation

windows determined separately by the line and field extrapolation

methods.

Clearly, this field extrapolation principle is another important

step toward implementation of an on-line processing system. For this

purpose, the left ventricular angiograms~~must'be~ stored on video

tape/disc"and these recordings, instead of cineangiograms, are used to

process the data. This combined extrapolation principle is, of course,

also applicable when a single frame of a cineangiogram is processed off-

line using a TV camera and a light table. Although this will have a

stabilizing effect on the contour detection, because it averages out

slight differences between consecutive fields, this was not the original

reason for applying the field extrapolation principle.

Defining the Center of the Expectation Window Using Both the Line

and Field Extrapolation Principle

The numbering of the scan lines in the odd and even fields is

defined as shown in figure 42. For simplicity, it has been assumed that

the field retrace time for the odd field is equal to zero and, for the

even field, is equal to the retrace time of the last line in this frame.

In-,reality, the number 9f scan lines per field is less than 256 because

of the actual field retrace time. The first complete line in each field

is assigned line number 1; this number is incremented by one for each

following line. For memory addressing purposes, the even field is
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—• ODD FIELD
— •• — EVEN FIELD

Figure 42.- Numbering of the scan lines in a video frame as defined,
for the field extrapolation principle.

distinguished by adding 512 (= 2^) to the line number. A moving straight

line is shown at its positions in fields (m-2) to the current field m.

A border point is denoted as gm(nT), where m refers to the field

number and n, to the line number; therefore, g, s[(n-l)T] is the

border position on line (n - 1) in field (m - 1). If only the line extrap-

olation principle is applied(, the center of the expectation window on

line (n+1) in field m is given as

hmL[(n + l)T] = 2gm(nT) - gm[(n-l)T] (53)

To calculate the center of the expectation window using the field
1 -^ »* . {
extrapolation principle, we'must distinguish between even and odd fields.

Assuming field m is an odd field, the center of the expectation window

is defined as

hmF[(n+l)T] = 2g(m_l)(nT) - g(m_2) [(n + 1)T] (54)

If field m is an even field, hmp[(n + 1)T] is defined as
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hmF[(n + l)T] = 2g(m_i;)[(n + l)T] - g(m_2)[(n + l)T] (55)

Applying both extrapolation principles simultaneously results in:

Field m is odd field: *

h rr 4.1VT1hm[(n + l )TJ = - - - (56)

/
^

Field m is even field:

2g m (nT)- -g m [ (n - l )T3- + 2 g ( m _ l ) [ ( n + l )T] - g ( m . 2 ) [ (n + l )T]
l ^ L C n + l J T J = - ;; -

- ... - - (57)

Note that . hm[(n + l)T] is calculated shortly after gm(nT) has been

detected, so that the line number at that moment is n. The zeroth-

order field extrapolation principle can be applied by substituting

•g(m_i)(nT) and g/ „,_,) ['(n+ 1)T] in equations (56) and (57), respectively,

instead of g(m-2) [(n + 1)T] • - The center of the expectation window can

thus be determined in four different ways by selecting independently the

zeroth- and first-order line and field extrapolation principles,

.respectively.

The determination of the center of the expectation window using the

first-order line and field extrapolation principles is illustrated in

figure 43. The left ventricular contour is shown at its different' posi-

i tions in fields (m-2) through m. It is assumed that the current field

m is an odd field. The center of the expectation window determined by

only the line extrapolation principle from gm(nT) and gm[(n-l)T] is

denoted hmL[(n+l)T]. Applying only the field extrapolation principle

results in hmF[(n+l)T], as calculated, from g^^ (nT) and g(m_2)[(n+ 1)T] ,

.The actual center hm[(n + l)T] on line (n+1) in field m is then
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FIELD (m-2)(m-1) m

h_F[(n+1)T] LEPR LSPR
(n+1)

- (n+1J

LSWL . LEWL
ODD FIELD
EVEN FIELD

Figure 43.- The center hm[(n + l)T] of the expectation window on line
(n+1) in field m is defined as the average position of the centers
h^lXn+ 1)T] and hmp[(n+l)T] of the expectation windows, determined
separately by the line and field extrapolation methods, respectively.

defined as the average value of hmL[(n + l)T] and hmp[(n + 1)T]. Assuming

figure 43 shows the left border of the left ventricular contour, the

left-hand side of the expectation window is denoted LEPL and the right-

hand side, LEPR. The distance from LEPL to hm[(n+l)T] is denoted LEWL.

Generally, a sample point LSPL is defined at a distance LSWL from LEPL.

The other sample point to the right of the border is denoted LSPR. The

positions of the expectation and sample points are described in more

detail in chapter 8. However, at this point it is important to know how

the positions of LSPL and LEPL are calculated from hm[(n+l)T]. As

explained in chapter 8, LEPR is determined from the position of LEPL and

LSPR from gm[(n+l)T]. Note that the expectation and sample window

widths are determined in a 4-bit binary format,- ,, . | , r

Implementation

The circuitry used to calculate the center of the expectation

window hm[(n + l)T] for the left and right borders has been implemented

separately. The calculation for both borders can be done simultaneously

109



BORDER COORD (12 BITSI
+ CONTROL BIT

13 BITS

during the horizontal synchronization pulse, requiring only one control

unit. However, calculating the center of the expectation window for the

right border requires an extra time state to handle the aortic valve

simulation. The design of the memory configuration for the left border

and the required timing are described with actual circuit diagrams, a

flow chart, and a timing diagram. The actual implementation of the

control unit will not be described.

The left-border coordinates of the last two fields are stored in a

Ik x13 bit static n MOS random access memory (RAM) with an access and

cycle time of 500 nsec maximal (chapter 5, fig. 23). With each coordi-

nate available in a 12-bit format, the thirteenth bit is used as a con-

trol bit, which is zero, if there is

no border point on a scan line and

one if there is a border point. The

implemented memory configuration is

shown schematically in figure 44.

Storing the 13 bits present at the

DATA IN input at a location specified

by the 10-bit address is accomplished

by having the READ/WRITE and CONTROL

ENABLE inputs both low. Reading data

from a specified memory location

occurs' when the READ/WRITE input is

high and the CONTROL ENABLE low.

After the DATA OUT outputs have sta-
Figure 44.- Memory configuration

for storing the left-border bilized, these data can be loaded
coordinates of two fields.

READ/
WRITE

10 BITS \

CONTROL
ENABLE

DATA IN

R/W

Ik « 13 BIT
RAM

ADDRESS

2102 1

DATA OUT

I BITS

CONTROL

IN

MEMORY BUFFER
REGISTER

LSB OUT MSB

CONTROL

TO ARITHMETIC UNIT
LEFT BORDER
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into the memory buffer register MBR. Using tri-state buffers, this

information can be applied to the B-bus of the left-border arithmetic

unit during the appropriate time periods to calculate the center of the

expectation window.

The actual circuitry for the field memory is shown in figure 45.

The eight least significant bits of the address are determined by count-

ing the scan lines during a video field using 4-bit counters COCCI and

COCC2. The counter outputs are connected to the inputs of an 8-bit

adder (ADCC1 and ADCC2), which adds a 1 to the address when

g(m_2) [(n +1)T] and g(m_1) [(n+ 1)T] need to be accessed. The 9th bit

of the address is always zero and the most significant bit can be 0 or 1,

depending on whether one wants to access the coordinates of an odd or

even field, respectively. Therefore, the detected border coordinates in

an odd field will always be stored in the lower half of the memory and

the coordinates in an even field in the upper half. Note that the nine

least significant bits must be used for the video line number if a

625-line video scan is used, as for European systems.

The memory buffer register (MBR) consists of four 4-bit bidirec-

tional universal shift registers, SRCC1-SRCC4, which enable one to load

data, shift left and right, and inhibit the clock. BUCC1 through BUCC3

are the tri-state buffers that apply the data to the B-bus of the

arithmetic unit at the appropriate times.

Figure 46 is a flow chart of the complete procedure used to calcu-

late the center of the expectation window on line (n+1) in field m.

The processing cycle is completed in 2.75 psec, divided into 11 time
i

states of 250 nsec each, as shown in the timing diagram in figure 47.
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Figure 46.- Flow chart for calculating the center of the expectation
window using the line and field extrapolation principles. ,
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ts 0 ts 1 ts 2 ts 3 ts 4 ts 5 ts 6 ts 7 ts 8 ts 9 ts 10 ts 11 ts 12 « 13 ts 14

SET MEMORY ADDRESS
FOR BORDER POSITION
IN PREVIOUS FIELD (m-1)

M(ACL) = 2gm(nT) -g^ln-IIT]

ENABLE FIELD MEMORY

M(MBR) = g(m_,, (N,T)
CHECK CONTROL BIT g(m.,|(N,T)
AND FE

M(MBR) = 2 M(MBR)

M(ACL) = M(ACL) + M(MBR)

SET MEMORY ADDRESS
FOR BORDER POSITION
IN FIELD |m-2)

1
nsec -

M(MBR) = MIMBR)

CHECK CONTROL BIT g(m_2|lN2T>
AND ZEROTH OR FIRST ORDER
FIELD EXP WINDOW PRINCIPLE

M(MBR| = g|m-2|(N2T)

M(ACL| = MIACLI - MIMBRI

M(ACL)
MIACLI

SET MEMORY ADDRESS
FOR g^lnTI

STORE gm(nT)
INTO MEMORY

MIACLI =. MIACL) - LEWL

MIACLI = MIACL) - LSWL

u

LJ

U

Figure 47.- Timing diagram for calculating the center of
the expectation window.
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This diagram indicates which manipulations are done during which time

states. The comments in figure 47 are given for the case in which the

first-order extrapolation principles are used with the control bits

unequal to zero. The complete flow diagram is described below; at the

same time references are made to the timing diagram.

The field extrapolation principle is enabled by activating a switch

shown at the top of the flow diagram. So long as this switch has not

been activated, the center of the expectation window is determined using

the line extrapolation principle only (this will be clarified later on).

To always start in the same phase after having activated the switch, the

first complete odd field after this moment is defined as the first field

with FE (field enable) =1. The most significant address bit A9 is made

low at the beginning of each video line in an odd field to access the

lower half of the Ik memory and is made high at the beginning of each

video line in an even field. The first full line in a field after the

occurrence of the vertical synchronization pulse is assigned the value

n = l.

The calculation of the center of the expectation window hm[(n + l)T]

is only carried out if a left-border point has been detected at the

current line n. If no left-border point has been detected during a

scan line, then gm(nT) = 0 is stored into memory with a corresponding

control bit equal to zero, indicating that all zeros have been stored at

this location. This is not explicitly shown in the timing diagram. As

a result, all scan lines not traversing the left ventricle are assigned

a control bit equal to zero. Because of the vertical movement of the

entire left ventricle over a heart cycle plus its contraction and
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ejection movements, it is important to -know if actual contour points were

detected at the selected video lines in the previous fields.

Assuming a left-border point has been detected, the most significant

address bit is inverted at the beginning of time-state ts^ to access

the border coordinate in the previous field. Also, a 1 is added to the

address if the current field is an even field (compare eqs. (54) and

(55)). During time state tsl, the center of the expectation window is

calculated according to the line extrapolation principle as

2gm(nT) - gm[(n - 1)T]. This calculation is done in the arithmetic unit

for the left border in the same way as described 'for the right border in

chapter 8. The result is stored in four 4-bit shift registers of the

same type as usedi for the memory buffer register (fig. 45). This 16-bit

register is referred to as ACL (accumulator left border) and its con-

tents as M'OACL) ; therefore,

M(ACL) = 2gm(nT)-gm[(n-l)T] (58)

If the zeroth-order line extrapolation is selected, gm(nT) is substi-

tuted for gm[(n-l)T] and the result is

M(ACL) = 2gm(nT) - gm(nT) = gm(nT) (59)

The field memory is enabled at the beginning of time state tsl '

and, with the correct address applied, g/m_1\(NjT) is read and stored

into the memory buffer register at the end of ts2, that is

., . , M(MBR) = g(m_i:)(NiT) (60)
i

where NI = n if the current field is an odd field and Ni=n + l for an

even field. At the end of ts2, it is also checked if the field extrap-
t

olation principle was not selected (FE = 0?) and if the control bit for

g(m_,)(NiT) is equal to zero. If the answer to one or both of these
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questions is true, then the MBR is cleared for the remainder of this

processing cycle. This situation is referred to as FF:=0. This means

that the center of thei-expectation window will be determined only by the

line extrapolation principle. Independent of whether the data in the

, MBR are unequal to zero or not, the contents of MBR are shifted over one

position to the right at the end of ts3, which yields

M(MBR): = 2M(MBR). These new data-are added to the. contends of the

accumulator during ts4. Assuming that one had selected the first-order

line extrapolation principle and activated the field extrapolation

switch, the contents of ACL would be

M(ACL) = 2gm(nT) -gm[(n-l)T]+2g(„,_!) (NjT) (61)

At the beginning of ts3, the address is set for the reading of the data

from field (m-2) during a later time state. The most significant

address bit A9 is again inverted, thus giving it the initial value it

had at the beginning of the video line, and a 1 is added to the current

line number. The next step during ts5 is to shift the data in the MBR

one position to the left, resulting again in ' "'

M(MBR) = g(m_l)(NiT) (62)

Meanwhile, the coordinate g/m_-\[(n+1)T] is read from memory, but not

yet loaded into the MBR. At the end of ts5, the system checks whether

the zeroth-order field expectation window principle was selected and

whether the control bit for g/ v[(n + l)T] is equal to zero. If the

answer to one or both of these checks is true, then the zeroth-order

field extrapolation will be applied. The border coordinate

g/m_ \[(n+ 1)T] will not be stored in the MBR, but the old data

g(m_1)(NiT) are subtracted from the accumulator contents during ts7.
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If this is not the case, then g, . [(n+l)T] is stored in the MBR at

the end of ts2 and the contents of MBR are subtracted from the

accumulator contents.

Earlier, the conditions were described for which the MBR was

/
cleared for the remainder of the processing cycle (FF=0). It is clear

that, under these conditions, the contents of MBR do not change even if

one wants to load g(m_2)[(n+1)T], because MBR remains cleared
- r, -*' ! - I

independently of the clock pulse.

These same conditions are also important for the next step. If

FF=0, the accumulator contains the center of the expectation window

calculated according to the line extrapolation principle only. For this

condition, the clock to the accumulator is inhibited during ts8 and

nothing happens. If FF^O, then the accumulator contains the sum of

the centers of the expectation windows as calculated according to the

line and field extrapolation principles separately. To obtain the

average of these centers, the contents of the accumulator are shifted

one position left during ts8, resulting in

M(ACL) = hJCn + DT] (63)

At the beginning of ts7, the extra 1 in the memory address is removed

and the last detected border point ĝ nT) is stored in memory during

ts8 and ts9.

The expectation window width LEWL is subtracted from hm[(n+l)T]

during ts9 and the result is stored in the accumulator. As explained

in chapter 8 for the right border, these data are also stored in D flip-

flop registers; these data then represent the left-hand side LEPL of the
i

expectation window. Similarly, the sample window width LSWL is
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subtracted from the contents of the accumulator during tslO and stored

in ACL at the end of tslO. The final result is then that the accumula-

tor contains the position of LSPL for the next video line in the current

field.

The processing cycle for calculating LEPL and LSPL on the next

video line (n +1) in the current field m is now complete and we return

to the beginning of the flow chart for the next processing cycle. If

line n was not the last line in the video field, then the address is

incremented by one and bit A9 is reset to zero if the current field is

an odd field and set to one for an even field. With n being the last

line in the field, the line counter is reset during the vertical

synchronization pulse and the whole cycle is repeated.
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CHAPTER 8: IMPLEMENTATION OF EXPECTATION AND

SAMPLE POINTS

In chapter 7, the center of the expectation window hm[(n + l)T] on

line (n+1) in field m was defined as:

Field m is odd field:

, ,, ̂ ^^T 2Sm(nT) -aa[(n-l)T] + 2g(m-i)(nT) - g(m-2) [(n + 1)T]hm[(n + l)TJ=
 i (64)

Field m is even field:

ZgpfaT) - gJQi - 1)T] + 2g(m_ l ) [(n + 1)T] - g (m_2) [(n+ 1)T]

(65)

Formulas (64) and (65) are given for the general case that -the center is

determined using both the first-order line and field extrapolation

principle. The zeroth-order line extrapolation principle can be applied

by substituting (̂nT) for gm[(n-l)T] at the time of the calculation.

Similarly, the zeroth-order field extrapolation can be applied by sub-

stituting g(m-i)(
nT) and 8(m-l)[(n+1)T] in equations (64) and (65),

respectively, for 8(m_2)t(
n+1)T1• These features have been imple-

mented in the actual system, allowing an instantaneous comparison of the

different principles.

The values of the border positions are determined in digital format

by counting clock pulses from the horizontal synchronization pulses to

these border points. The required clock frequency can be derived by

considering the possibly occurring errors and the required accuracy.

The maximum error, which can occur in the determination of a border

point, is ±1 bit. The calculation of the center of the expectation
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window, according to each extrapolation principle separately, results in

a maximum error of ±3 bits for each principle. Because hm[(n+l)T] is

defined as the average of these two centers, the maximum possibly occur-

ring error in hjjJCn+l)!] is again ±3 bits. The position of

hm[(n+l)T] on line (n + 1) is found by comparing the state of a position

counter with the calculated value of hm[(n + l)T]. Another ±l-bit error

is possible here, resulting in a total maximum error of ±4 clock periods.

Thus a high count frequency is required if one wants the center of

the expectation window to be a good approximation of the next border

point under all circumstances. This is especially true in areas of low

contrast, where the expectation window width is automatically narrowed

down (chapter 10) under the assumption that the next border points are

detected or generated as forced border points in a direction determined

by previous border points. Therefore, an overall accuracy of ±80 nsec

was assumed, resulting in a clock period of 20 nsec or a clock frequency

of 50 MHz.

With the required accuracy in mind, the temperature stability of

the clock pulse oscillator is certainly important. Assume that we allow

the number of counted pulses over one line period (= 57 ysec) to be off

by no more than one count. The time period used, 57 ysec, is the time

from the rising edge of the inverted horizontal synchronization pulse on

a line until the trailing edge of this pulse at the end of the line.

The number of clock pulses for each 57 ysec is

so that

= 2850 (66)
20xlO~9
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AT = -̂ r- x 20 nsec = 7.02x10 12 sec (67)
/oil)

and

Af = 17.5 kHz (68)

Assuming a temperature range of ±10° C in the ventilated system, this

requires a Af/°C = 35 ppm/°C. With a maximum number of clock pulses

per line of 2850, the coordinates of the contour for use in the contour
i, -

detector are determined in a 12-bit format.

Applying formulas (64) and (65), the center of the expectation

window is also determined in a 12-bit format. However, we also must

determine the beginning and end points of the expectation window to

enable the comparator, and the sample points to calculate the dynamic

reference level.

If it is assumed, for simplicity, that only the first-order line

extrapolation principle is applied, the beginning and end points of the

expectation window on line (n+1) are shown in figure 48 for the left

SCAN LINES

SCAN DIRECTION
LEWL LEWR »-

LEFT VENTRICULAR
BORDER

Figure 48.- Positioning of beginning point LEPL and end point LEPR of
the expectation window on line (n + 1) for the left border.

border. These points are denoted LEPL and LEPR, respectively, where the

first letter refers to left (L) or right (R) border, EP to expectation

point, and the last letter to the left- (L) or right- (R) hand side of
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expectation window, respectively. According to the way the system has

been implemented, these beginning and end points are defined as

LEPL = h[(n + l)T] -LEWL (69)

and

, . LEPR = LEPL + LEWL + LEWR ' ' (70)

that is, LEPR is determined from the position of LEPL (W in LEWL and

LEWR refers to window). Note that the assigned value of a point in

digital format increases, from left to right in figure 48.

Three sample points are defined for the left border, as illustrated

' in figure 49 (explained in more detail in chapter 10). The sample

points are denoted LSPR, LSPL1, and LSPL2, respectively, where the first

letter again refers to the left (L) or right (R) border, SP to sample

point, and the last letter to the left (L) or right (R) side of the

border, respectively. Assuming the last detected border point is g(nT)

on line n, the video signal is sampled on the same line at a distance

LSWR ,f rom g(nT) and on the next line (n+1) at distances LSWL and

LSWL/2 before the left-hand side of the expectation window LEPL,

respectively (SW refers to sample window). The video samples at the

(n-1)

fSCAN LINES

SCAN DIRECTION
LEFT VENTRICULAR

BORDER

Figure 49.- Three sample points (LSPR, LSPL1, and LSPL2) are defined to
determine the reference level for the next line (n + 1) for the left
border.

124



three defined sample points are used to calculate the reference level

for line (n+1). After g[(n+l)T] has been detected, a sample point

LSPR at a distance LSWR from g[(n + l)T] is again defined for calcu-

lating the reference level for line (n+2), etc. • .

Sample point LSPR is determined from the detected border point

g(nT) on line n as <

LSPR = g(nT) + LSWR ,. - (71)

and sample point LSPL1 is calculated from LEPL as

LSPL1 = LEPL - LSWL - (72)

In the implemented system, sample point LSPL2 is derived from LSPL1 as

LSPL2 = LSPL1 + -^P ' , . (73)

The window width LSWL should always be chosen so that there is

enough time left for the track-and-hold amplifier to acquire an accurate

sample of the video signal at LSPL2 and for the 'analog circuitry

(chapter 10) to determine the new reference level from the video sam-

ples, before the comparator is enabled at LEPL.' From the specifications

for the track-and-hold amplifier and from measurements, it was deter-

mined that the minimum allowable width for LSWL is 400 nsec. This

restriction does not apply for LSWR because the sampled level at LSPR

is not used until the samples at -LSPL1 and LSPL2 are available.

The width of the defined expectation and.,sample, windows are

separately and manually adjustable in the implemented system using

12-position rotary switches. The selected position of a switch is con-

verted into a 4-bit number with the circuitry in figure 50.

The selected switch position is not directly converted into binary

format, but initially into the reflected binary or Gray code. The Gray
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ROTARY SWITCH

Figure 50.- Conversion of a selected rotary switch position into
4-bit binary format.

code is a unit distance code, which means that only one bit at a time

can change when incrementing or decrementing the decimal equivalent with

one. This code is extremely useful for converting shaft positions into

binary format. In straight binary, it is possible to enter incorrect or

invalid states during switching. For example, going from binary

Olll(710) to 1000(8io) results in 1111(1510) during the time that the

switch contact overlaps both positions. It is assumed here that make-

before-break-type switches are used; otherwise, the state 0000 would

occur during switching.
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Implementing the circuitry in figure 50 for each parameter, the

selected window widths LEWL, LEWR, LSWL, and LSWR are available in

binary format.

So far, the derived formulas all applied to the left border. The

formulas for the right border can be derived similarly, except that an

extra term must be included to generate the designated aortic valve

plane. The aortic valve width AV is defined as the horizontal distance

between two consecutive aortic valve points referred to the same line.

The width AV is available in an 8-bit format; AV=0000 0000 results in a

generated valve plane perpendicular to the scan lines and AV = 1111 1111

results in a position change of aortic valve points from line to line of

255x20 nsec = 5.1 psec. However, assuming that such a big change from

line to line will not occur under practical circumstances, the AV has

been implemented so that AV = 1001 1110 is the greatest value which

corresponds to a maximum' change of 3.16 ysec from line to line.

The aortic valve which AV is manually adjustable with the third

potentiometer in the joystick. Rotating the shaft of the joystick

changes the dc voltage level at the input of an 8-bit A/D converter; the

circuitry is given in figure 51. The analog voltage is sampled each

16.67 msec during the vertical synchronization pulse.

The positions of the expectation and sample points during the

aortic valve simulation are given in figure 52. So-long as this simu-

lated valve plane is generated, the field extrapolation principle is

inhibited and only the zeroth-order line extrapolation principle is

applied, necessary for the generation of a straight line.

The beginning point REPL of the expectation window on line (n + 1)

is determined by

REPL = g(nT) +AV-REWL (74)
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AORTIC VALVE

(n-1)

(n+1)

LINES

SCAN DIRECTION

Figure 52.- Definition of expectation and sample points during the
generation of the simulated aortic valve plane.

The end point of the expectation window during the aortic valve plane

generation is defined as

REPR = REPL + REWL (75)

Because the left ventricular cavity is now the left of the right

border, the three sample points RSPL, RSPR1, and RSPR2 necessary for

calculating the reference level on line (n+1) are defined as shown in

figure 52. Sample point RSPL is defined as

RSPL = g(nT) + AV - REWL - RSWL = REPL - RSWL (76)

Sample points RSPR1 and RSPR2 on line n are derived from g(nT) as

RSPR1 = g(nT)+RSWR ' , (77)

and • t

RSWR
RSPR2 = g(nT) +- (78)

In the present implementation of the system, the dynamic reference

level is not applied to the right-border comparator during the aortic

valve plane generation, but instead a dc preset reference level

(chapter 10). However, it is explained in chapter 12 that the end of the

simulated aortic valve plane can be determined from these video samples.
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During the aortic valve simulation, the analog comparator for the

right border is enabled from REPL until the aortic valve point at

g(nT)+AV. If the comparator does not encounter a point with the same

brightness level as the preset reference level during this period, then

the aortic valve point is defined as the contour point. However, if a

point occurs with the correct reference level within the defined expecta-

tion window, then this point is defined as the first right-border point

and the aortic valve simulation is stopped. Because of the sudden direc-

tion changes, the center of the expectation window for the second right-

border point is always calculated using the zeroth-order line

extrapolation principle. The field extrapolation principle is also

again applicable for the second right-border point. From this point,

each of the four possible combinations of line and field extrapolation

principles can be applied by the appropriate selection of the MODE

switches (fig. 53).

The general formulas for the expectation and sample points after

the aortic valve simulation period can be derived from formulas (74),

(75), and (76). For the general case with the center of the expectation

window denoted hjn[(n + l)T], equation (74) becomes

REPL = hm[(n+l)T]+AV-REWL (79)

The end point REPR is defined as

REPR = REPL+REWL+REWR (80)

Equation (76) can now be written as

RSPL = hm[(n+l)T]+AV-REWL-RSWL (81)

The formulas for RSPR1 and RSPR2 remain, of course, unchanged.
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FIRST LBP
-FIXED DISTANCE

2EROTH
ORDER LINE

EXTRAPOLATION
PRINCIPLE ONLY

ZEROTH OR FIRST ORDER
LINE AND FIELD

EXTRAPOLATION
PRINCIPLES

OUTPULSE

Figure 53.- Applicable line and field extrapolation principles for the
right border.

In order that the timing for the right-border arithmetic unit

remains unchanged, the term AV is always included but is made equal to

zero outside the aortic valve simulation period.

In the remainder of this chapter, the implementation of the

circuitry to determine the expectation and sample points for the right

border is described.

Arithmetic Unit

The arithmetic unit for the right b'order was designed as shown

schematically in figure 54. Using tri-state buffers, the addends are

all applied to the A-bus, and the augends or subtrahends to the B-bus.
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12-bit REGISTER

A BUS •
(12 bits) '

\7

CONTROL ALU
SUM'

DIFFERENCE

B BUS •
(12 bits)'

12 bits

Figure 54.- Simplified block diagram of the implemented
arithmetic unit.

The result of an arithmetic addition or subtraction is stored in a

12-bit register and can be applied again to the A-bus for the next

arithmetic operation.

The implementation of the arithmetic unit for the right border is

shown in figure 55. This unit calculates the positions of the points

REPL and RSPL in a 12-bit format. An identical unit has been built for

the left border; this unit is somewhat simpler because it need not carry

out the calculation for the simulated aortic valve.

After the right-border point g(nT) has been detected, its 12-bit

coordinate is available at the inputs of DFZl through DFZ3 and BUZ3,

BUZ4, and BUZ7f. Consider the case when the zeroth-order line extrapo-

lation principle is selected. This occurs during the aortic valve
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simulation period and after that if manually chosen. At the start of

time state tsl (fig. 47, chapter 7), the 12 bits are stored in the D

flip-flop registers DFZ1, DFZ2, and DFZ3. With the tri-state buffers

BUZ1, BUZZ, BUZ3, BUZ4, and BUZ7f enabled during tsl, 2g(nT) is applied

to the A-inputs of the ALU, consisting of ALZ1 through ALZ4, and g(nT)

to the B-inputs. The ALU control being set for subtraction, the result-

ing 2g(nT) - g(nT) is stored at the rising edge of tsl into the shift

registers SRZ1 through SRZ4. These four shift registers are referred to

as ACR (accumulator right border).

For the first-order line extrapolation principle, 2g(nT) is again

applied to the A-bus during tsl through the appropriate tri-state

buffers. However, at this moment, g(nT) is not stored in flip-flop

registers DFZ1, DFZ2, and DFZ3. During tsl, the information in these

registers is then still g[(n-l)T] from the previous line and this

coordinate is applied to the B-bus. At the end of tsl, the resulting

2g(nT) - g[(n - 1)T] is stored in the accumulator.

The contents of the accumulator can be applied to the A-bus

through tri-state buffers BUZ5, BUZ6, BUZ7a, and BUZ7b at the appropri-

ate time states as defined in figure 47 for additional additions and

subtractions.

The four bits representing REWL are connected to the inputs of the
')' 1

tri-state buffer BUZ9. By shifting the four bits of REWL one position

to the right at the inputs of BUZ9, the expectation window can be

adjusted in steps of 40 nsec. Similarly, the four bits representing

RSWL are connected to the inputs of tri-state buffer BUZ8. These four

bits are now shifted up two positions so that the position of RSWL is

adjustable in steps of 80 nsec.



After the position of REPL has been calculated in the arithmetic

unit, this information is stored in flip-flop registers DFZ4 through

DFZ6- At the end of the processing cycle, the position of RSPL is

stored in the accumulator.

It has been explained that one extra addition must be carried out

for the right border because of the simulated aortic valve. The 8 bits

representing the valve width are applied to the B-bus through tri-state

buffers BUZ11 and BUZ12.

The control circuitry has been designed so that the system always

starts in the zeroth-order line extrapolation mode at the starting line

and at least two aortic valve points are generated, thereby eliminating

any initial condition problems. Without this preventive measure, actual

right-border points (as distinguished from aortic valve points) could

be detected near the left-border points. This would result in erroneous

border points and a halt in the detection process caused by the outpuls'e

mechanism.

So far, it has been explained how the coordinates of the expecta-

tion point REPL and the sample point RSPL on line (n+1) are calculated

from the available coordinates on previous lines and in previous fields.

The position determination on a scan line of these points, as well as

the points REPR, RSPR1, and RSPR2, is described in the next section.

This has been implemented with digital comparators and 50-MHz counters.

At the same time, it will be shown how the 12-bit coordinate of a

detected border point is determined.
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Position Determination of Expectation and Sample Points

When this system was implemented, no synchronous Schottky TTL,

50-MHz counters were available on the market. Except for this, the

total delay resulting from the digital comparison and from required con-

trol logic implemented with Schottky TTL would be more than one clock

period. To compensate for the extra time delays, additional logic would

be required. This compensation would especially be important as the

, "E
window widths decrease, which occurs, for example, when th'e expectation

window width is adjusted dynamically according to local brightness

levels (chapter 10).

For these reasons, the ECL 10k logic family was chosen to determine

'the positions of the expectation and sample points. This family proved

very successful for this particular application. The wired OR capabil-

ity could be used advantageously in the digital comparator and, because

of the "constant current" switching behavior, there is very low noise

generation compared with the large "spikes" associated with Schottky TTL.

The ECL 10k family involves somewhat more work because the wire connec-

tions must be terminated with the characteristic impedance of the line.

At these high speeds, the wires behave like transmission lines requiring

correct resistive terminations. However, a careful design and

implementation resulted in a very reliable system.

The implementation of the circuitry to determine the positions of

~ - — - - t s

points REPL and RSPL and the 12-bit coordinate of the border point on

each scan line is given in figure 56.

Basically, this circuitry works as follows. The data stored in the
i

flip-flop registers and the accumulator of the right-border arithmetic
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unit, representing REPL and RSPL, respectively, are connected to the

inputs of TTL-to-ECL translators TEAA1-TEAA3 and TEAA4-TEAA6, respec-

tively. ,From the beginning of a scan line until the position of RSPL

has been determined, the 12 bits representing RSPL are applied to one

side of a 12-bit comparator through the translators. The 12-bit com-

parator is implemented with Exclusive OR gates XOAA1-XOAA4 and NOR gate

ORAAZb.,, The other side of the comparator is connected to the outputs of

the 50-MHz counters COAA1-COAA3. These counters start counting the

clock pulses at the rising edge of the horizontal synchronization pulse

for the scan lines traversing the left ventricle. As soon as the con-

tents of the counter equal the 12-bit data word for RSPL, the output of

the digital comparator becomes high. This signal is connected to the D

inputs of flip-flops DFAAlb and DFAAla. Inverted 50-MHz clock pulses,

slightly delayed with respect to the clock pulses at the clock inputs of

the counters, function as sample pulses for flip-flops DFAAla and DFAAlb.

, The clock input of DFAAla is disabled as long as flip-flop DFAAlb is in

. '.the, initial condition. Flip-flop DFAAlb is then set at the rising edge

,of the sample pulse, indicating the position of RSPL. The other set of

translators is now enabled, applying the 12 bits for REPL to the digital

comparator, whose output becomes low again. The counters continue to

count and the output of the comparator becomes high again as the state

of the counters equals the 12-bit data word for REPL. Flip-flop DFAAla

is then set, indicating the position of REPL. With the Q-output of

DFAAla high, the analog comparator is enabled and the sample pulses are

disabled.

138



As the video signal crosses the reference level, the comparator

changes state and the output of LRAAla becomes high (fig. 57). This

resets the flip-flops and the counter stops counting clock pulses. The

state of the counter thus represents the border coordinate on this par-

ticular line and this information is applied through ECL to TTL

translators ETAA1-ETAA3 to the arithmetic unit (fig. 55).

The analog comparator is also enabled during the horizontal

synchronization pulses. It then returns to the initial condition with

the true output high. Since no REPL and RSPL values have been calcu-

lated for the starting line SL, the analog comparator is enabled on

this line by setting flip-flop DFAAla with the starting point (SP) sig-

nal. So far we have determined the positions of RSPL and REPL and the

detected border coordinate in 12 bits. The positions of the points

REPR, RSPR1, and RSPR2 are found with the circuitry in figure 57.

Basically, the positions of these three points are determined in a

way as described for figure 56. A digital comparator is used which com-

pares the state of a 50-MHz counter with a data word, giving the posi-

tion of this particular point with respect to a predetermined point.

The output of the comparator becomes high when both binary words

applied to the comparator are identical. The comparator output signal

is sampled with inverted 50-MHz clock pulses, slightly delayed with

respect to the counter clock pulses. The low-to-high transition of the

Q-output of the sample flip-flop then indicates the position of this

particular point.

Counters COAB3 and COAB4 have been implemented to determine the

position of the right-hand side REPR of the expectation window. The
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counters are enabled immediately after REPL has been detected. A 5-bit

data word, representing REWL4-REWR, is applied to the other side of the

comparator. The term REWR is made equal to zero during the aortic valve

simulation period (compare eqs. (75) and (80)).

Flip-flop DFAB6a determines when the first right-border point after

the aortic valve simulation period is detected. The output signal from

the analog comparator for the right border functions as the clock signal
* ' I

for this flip-flop. If the analog comparator changes state before REPR

has been detected, that is, before DFABAa is set,' then flip-flop DFAB6a

is set, indicating the end of the simulated aortic valve plane.

The position of a right-border point is indicated by the low-to-

high transition of the Q output of flip-flop DFABSa, which is cleared

during the horizontal synchronization pulse. The clock signal for this

\
flip-flop is the output signal from ORAB3b, which is the OR, function of

\
several possible border-indicating signals.

The border point is defined at the first low-to-high transition. per

video line of one of the input signals of ORABSb. This occurs when:

(1) the comparator changes state as the video signal crosses the refer-
s

ence level, or (2) when the flip-flop DFAB4a is set, indicating the posi-

tion of REPR (this results in a forced border pulse at the end of the

expectation window) , or (3) when the beginning point of the aortic valve

is generated. ' _

The same OR function plus the reset pulse during the horizontal

synchronization pulse is generated with OR gate ORAB3a; this signal is

applied to the circuitry in figure 56 as a reset for the flip-flops,

thereby disabling the analog comparator and the clock pulses.
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Before describing the circuitry used to determine the positions of

sample points RSPR1 and RSPR2, the required control signals for the

sample-and-hold amplifiers are discussed. The sampled values at RSPR1

and RSPR2 must be stored until the next border point has been detected.

This means that the time from g(nT) until RSPR1 and RSPR2, respectively,

is available only as settling time for the amplifier in the TRACK mode.

According to the specifications, we should allow at least a 200-nsec

acquisition time. Therefore, we have assumed a lowest limit for RSWR of

240 nsec (rotary switch set at 3), resulting in a minimum time period of

120 nsec between g(nT) and RSPR1. Another sample/hold amplifier is

then required for RSPR1 to sample the video signal accurately at this

point (fig. 58). The first S/H amplifier Rll is in the TRACK mode from

the horizontal sync pulse until RSPR1 and holds the video sample from

this point until the end of the scan line. The second S/H amplifier R12

samples the output voltage of Rll and holds this value until the

*- V,

Figure 58.- Video samples for calculating the reference level of the
right border are obtained with four sample/hold amplifiers.
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detected border point g[(n+l)T] on the next line. The required

control signals for the sample/hold amplifiers for the right border are

given in figure 59.

9(nT\. RSPR1 RSPR2 IT""-11

U RSPL

u
TRACK

TRACK

HOLD

\
V

TRACK

TRACK

-g|(n+1|T|

HOLD

HOLD

HOLD

SCAN LINES

(n+1),

CONTROL
SIGNAL

CONTROL
SIGNAL

CONTROL
SIGNAL

CONTROL
SIGNAL

S/H L

S/H R11

S/H R12

HOLD HOLD

Figure 59.- Required control signals for the sample/hold amplifiers
for the right border.

These necessary control signals for S/H amplifiers Rll and R2 are

implemented with the circuitry in figure 57. Counters COAB1 and COAB2

are enabled immediately after a right-border point has been detected and

are used to determine the positions of RSPR1 and RSPR2. The digital

comparator for RSPR1 consists of XOAB4a-XOAB4c, XOABSa, and ORABSa and

for RSPR2, XOABla-XOABlc, XOAB2a, and ORAB4a. Both comparators have the

four bits representing RSWR in common. By connecting the other inputs

of the comparators to the appropriate outputs of the counters, each unit

of RSWR corresponds to a time period of 80 nsec. In exactly the same

way as described for the expectation points, the comparator outputs are

sampled with 50-MHz sample pulses and the positions of RSPR1 and RSPR2
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are determined. The control signals for S/H amplifiers Rll and R2 are

generated with flip-flops DFABla and DFAB3b, respectively. The control

signal for amplifier R12 has been realized using monostable

multivibrators (not shown in fig. 57).

One part of figure 57 has not yet been discussed - flip-flop DFABSb

and associated gates connected to it. This flip-flop is used to detect

whether a REPL occurs before'a left-border point has been detected. If

this is true, then the outpulse is generated. Border points are no

longer allowed on this line because the left and right margins could

cross each other at this point. By clearing the flip-flop from the
ii

vertical synchronization pulse until the end of the aortic valve, care

has been taken that no REPL is detected before a left-border point at

the-beginning of the simulated aortic valve plane, where the distance

between both margins also can be small. Other reasons for generating an

outpulse are.described in the following section.

Outpulse Mechanism

The contour detection is halted during a video field as soon as the

outpulse occurs. The implementation of this outpulse mechanism is shown

in figure 60. An outpulse is generated for the following reasons:

(1) If no left-border point (LBP) has been detected on a video line

during the period from the starting point SP until the outpulse OP.

If this is true, then flip-flop DFM2a is set.

(2) If no right-border point (RBP) has been detected on a video

line during the period from1the starting point SP until the outpulse

or if <the right-border point occurs before the left-border point on a
r' ;

scan'line. For this condition, flip-flop DFMla is set by the last

144 ,



145



detected left-border point. The status of this flip-flop and flip-flop

DFM2a is sampled at the end of each scan line and flip-flop DFMlb is set

if one of the conditions mentioned above is satisfied.

(|3) If the distance between LBP and RBP at the apex is less than a

preset distance, manually adjustable from 200 nsec to 2.2 ysec with mono-

stable multivibrator MMM2. A pulse occurs at the output of NAND-gate

NAM2b if this condition is satisfied. The pulse is inhibited during the

aortic valve generation period, during which both borders can come

within this distance of each other.

A contour detector mode is selectable in which no simulated aortic

valve is generated. The analog comparator for the right border is then

enabled by the first left-border point and the first right-border point

is detected, where the video signal crosses a preset reference level.

This mode can be used advantageously with the video rectangle for test

purposes. The pulse at the output of NAM2b is then inhibited over an

adjustable number of scan lines, starting at the scan line with the

starting point. This has been implemented with monostable multivibrator

MMM1 and flip-flop DFM2b.

(4) If the left-hand side of the expectation window REPL for the

right border at the apex occurs before a left-border point has been

detected (as explained in fig. 57). The appropriate control signal is

applied to NAND-gate NAM2a (input point 1).

(5) If the video rectangle generator (appendix A) is used, then an

outpulse is generated at the end of the last line of the rectangle.

This outpulse can be selected with switch OPS. Using this outpulse, the

border detection on an actual left ventricular image can be halted
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wherever desired by changing the parameters of the rectangle. This is

used to advantage during certain design and checking procedures.

Flip-flop DFM3b is set at the first occurring low-to-high transi-

tion of the output signal from NAM2a during a video field. The change

in state of DFM3b triggers monostable multivibrator MMM6a, resulting in

a 400-nsec wide outpulse OP, which halts the border detection algorithm
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CHAPTER 9: ANALYSIS OF DYNAMIC REFERENCE LEVEL PRINCIPLE

In chapter 8, three sample points were defined for the determina-

tion of the reference level for line (n + 1) for the left border (again

illustrated in fig. 61). With the detected border point on-line n

T. .T- -T

(n-1)
LSPR

SCAN LINES

LSPL1 LSPL2 LEPL ;? A R
•(n+1)rg[(n+1)T|

AL AL
2 2

Figure 61.- Three sample points LSPR, LSPL1, and LSPL2 are defined to
determine the reference level for the next line (n+1) for the left
border.

denoted g(nT), the video signal is sampled inside the ventricle at a

distance AR from g(nT) on the same line, and in the background area

at distances AL and AL/2, respectively, before the left-hand side of

the expectation window on line (n + 1). The reference level for the

border point on line (n + 1) is then calculated as

Vref(n + l) = y \VR+^ + ̂J +VC (82)

where a is a proportionality factor, Vc is a constant voltage level,

VR is the video sample at LSPR, and VL1 and VL2 are the video samples

at LSPL1 and LSPL2, respectively. By taking the average value of VL1

and VL2, either side of the contour has the same weight. The function

of the two sample points at the background area is explained in more

detail in chapter 10.
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By use of a waveform monitor, the video signal at the left

ventricular border was studied. This study showed that the border area

can be approximated with linear functions (fig. 62). To gain more

BP(n) —+-1

Figure 62.- Linearized border model for left border.

insight into the detection process and to find an optimum solution so

that, under all reasonable conditions, an acceptable border point will be
j

detected, a line periodic video signal is assumed. This signal changes

linearly with a slope of Ya V/sec over the background area and with a

slope of YI V/sec beyond the actual border, with 0 <. Y2 < YI- It is

assumed that the straight line with slope YI V/sec goes through (0,0).

To simplify the calculations, one left sample point is assumed and both

sample points have the same distance A to the border point. The

sampled voltage level on line n at t = BP(n)+A is denoted Vg(n) and

the sampled voltage level on line (n +1) at t=BP(n)+T-A is denoted

VL(n + l).
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With this linearized border model, the effects on deviations from

the equilibrium situation are determined. This analysis will provide us

with the requirements the different parameters must satisfy for an

acceptable and stable contour under varying conditions.

Determination of the Equilibrium Situation

A border point is said to be acceptable if it occurs on the

ventricular slope within a distance A from the knee in the border

model. This results in one sample point on the ventricular slope and

the other in the background area. The function for the left ventricular

slope can be written as

Vi = Yit (83)

and the function for the background slope as

V2 = Y2t + bl- (84)

where YI > Y£- Because Y2
 wiH generally be relatively small, it is

always assumed that Y! > Y2«
 Tne position of the border, point BPeqU^^

in the equilibrium situation can be derived by substituting the formulas

for the sample levels Vĵ (n) and V^n+l) in the equation for the

reference level

Vref(n + l) = [VR(n) + VL(n + l)]+Vc (85)

with BP(n) as the unknown variable, and solving for BP(n) with

Vref(n + l) equal to the reference level for BP(n) . The sample levels

are

VR(n) = Yl[BP(n)+A] (86)

(87)
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if it is assumed that

•i BP(n) ^- (88)

Substituting equations (86) and (87) into (85) and solving for BP(n)

with Vref(n + l) = YI • BP(n) yields

(89)

and the final reference level

f "c

For what range of a values is the denominator positive? The equation

(91)

gzves

0 < a < (92)

'For Y£ < Y-, > t^ie denominator will always be positive for a < 1. For

the equilibrium situation, we require that

Substituting equation (90)-into (93) and solving for a yields

b - Vc ' ga , 1 Vc
A , b + AY -i

Because a is always greater than zero,

Vc < b (95)
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The functions

and

MVC) = 1-bT

b-V,,

(96)

(97)

and the allowed ranges for a and Vc are given in figure 63. The func-

tion a = 1- (Vc/b)tis independent of the possible changes in slopes

f2(Vc)

f1<VC>'

Figure 63.- Allowed region of a and Vc values for detecting a stable
contour point using the border model in figure 62.

Yi and Y, and connects both extreme biasing points. A bias point on or

near this function seems to be a reasonable choice. Changing the bias

point on this function from a = 0 , V c = b t o a = l , V c = 0 means that

one goes from a constant reference level at o = 0, Vc = b to the point

where the reference level is determined as the average of the sampled

levels. As a result, the deviation of the equilibrium reference level
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from the knee voltage of b volts increases with increasing a. (The

question of the bias line is discussed later in more detail.) The tran-

sient responses from initial conditions unequal to the equilibrium

position are discussed in the following sections.

Transient Responses Toward the Equilibrium Situation

Transient response for an initial condition within the acceptable

range of border positions- Consider the case for an initial border point

position, denoted by BP(0), satisfying

£- < BP(0) < Y~+ A (98)
Yl 1

and a reference level v
ref(l) ̂  ̂ equil' wnere vequil *s gi-ven by

equation (90) . What is the transient response toward the equilibrium

situation?

Because of the line periodicity, this can be derived from the

following equation:

BP(n + l) = Y~- Vref(n + l) = Y- j| [VR(n)+VL(n + l)]+vcJ (99)

which applies for an initial condition above as well as below the

equilibrium position within the indicated range. Substituting the

sampled levels on lines n and (n + 1) , respectively, gives

(100)

Applying the z transform with z[BP(n)] = BP(z) and solving for BP(z)

yields

zBP(O)
- Z —z__ ...
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Transforming back to the time domain

BP(n) =BP(0) • e

(102)

Check - initial condition at n = 0: BP(n = 0) =BP(0)

final value at n = °°:

SL
2

Again this is the equilibrium position as given by equation (89) .

The transient response is an exponential function with time

constant

<103>

Under the assumption that J2
 < YI an(^ 0 .< a < 1, it follows that

0 i| (1+77) < 1 (104)

which results in a negative exponent in the exponential function. If

YO << Yi» the time constant T can be approximated with T = -l/ln(a/2) .

A small value of a results in a small value for T and thus a fast

response. A y2 ^ 0 increases the response time. A relatively large

value for T results for values of a close to 1. This is allowed

because sudden position changes are also limited by the expectation

window width.
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Transient response for an initial condition with both sample points

on the ventricular slope- Consider the case with an initial condition

such that both sample points are on the left ventricular slope (fig. 64).

BP(n)

Figure 64.- Initial condition with both .sample points on the
ventricular slope.

What we need then is a mechanism, which "pulls" the border point back to

the equilibrium situation as defined by equation (89). This can be

derived by solving for the equilibrium reference voltage, in this case

with both sample points on the slope, and requiring that

Vequil < b + Wi ' (105)

As soon as a border point is within a distance A from b/Yj, the rest

of the trajectory is described by equation (102). Substituting

vR(n) = Yi[BP(n) + A] (106)

and

VL(n+l) = Yl[BP(n) - A] (107)
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into equation (85) with

Vref(n + l) = YiBP(n) (108)

gives

Y (Yl[BP(n) +A] + Yl[BP(n) -A]} + Vc = Yl • BP(n) (109)

Solving for BP(n) yields

BPequil = Yia°-a) dl°>

and

V,,
(111)

This equilibrium level should be chosen so that this situation with both

sample points on the slope changes to the situation with one sample

point on the slope and the other at the dark level (as indicated in

fig. 62). This requires that

vequil < b + AYl (112)

Because 0 < a < 1, (1 - a) in equation (111) is positive and, from equa-

tions (111) and (112), it follows that:

Vc .
a < 1 - b + A— (113)

the same upper limit as found in equation (94). This shows that if a

satisfies this condition, there is a "pulling" mechanism that changes

the situation with both sample points on the ventricular slope to the

stable situation with one sample point on the slope and the other in the

background area. The transient response can be derived similarly as

done in the previous section.

Substituting the sampled levels on lines n and (n+1), respec-

tively, into equation (99) gives, for BP(n+l),
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BP(n + l) = YJ- (f {Yl[BP(n) +A]+Y1[BP(n) -A]}+VC)

Applying the z transform with the initial condition denoted BP(0) and

solving for BP(z) yields

BP(z) = BP(0)
z - a YI (z - 1) (z - a)

Transforming back to the time domain yields

(115)

BP(n) = BP(0) • en ln a : /I _ en In d\ (116)

Check - initial condition at n = 0: BP(n = 0) =BP(0)

final value at n = °°: BP(n = <*>) = VC/YI (1 - a)

The transient response is shown in figure 65. The trajectory is a

decreasing exponential function with time constant T=-1/ln a, which is

independent of A and YJ- A value of a close to 1 again results in a

large time constant.

Given an initial condition BP(0) > b/Yj+A, the trajectory back to

the equilibrium situation is described by equation (116) so long as

BP(n) > b/Y!+A and by equation (102) for BP(n) <

BP(0)-r

BORDER 4
POSITIONS

8T

Figure 65.- Transient response from an initial condition BP(0) to the
equilibrium border position at BPequi^ = Vc/Yi(l-a).
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Transient response for an initial condition with both sample points

on background slope- In this case, a mechanism is needed that "drives"

the border point back to the equilibrium situation as defined by equa-

tion (89) (fig. 66). This can be derived by solving for the equilibrium

V

BP(n

Figure 66.- Initial condition with both sample points on the
background slope.

reference voltage, in this case with both sample points on the back-

ground function, and requiring that

Vequil > b - Y2A (117)

As soon as the reference level becomes greater than b - y?A during the

transient response, the situation changes because the right sample point

then will be on the ventricular slope. Before considering this situa-

tion, the requirement for equation (117) is determined. Substituting

and

VR(n)

VL(n+l)

(118)

(119)
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into equation (85) with

Vref(n + l) = Y2 ' BP(n) +b(l-^) (120)

and solving for BP(n) yields

and

_ vcvequil " ]__ a

This equilibrium level then should be chosen so that this situation with

both sample points on the background slope changes to the situation with

one sample point on the ventricular slope and the other in the back-

ground area. Solving for a from equations (117) and (122) yields

'. ' a. > I - -—£— (123)
b - Ay2

Plotting this function in figure 63 shows that the allowed region of a

and Vc values is now much smaller under the conditions of equation (123).

However, the bias line a = 1 - (Vc/b) always satisfies this requirement.

, The transient response can be derived in a manner similar to the

other cases. Since the border point is now on the background slope, the

transient response can be derived from

BP(n + l) =

- (124)

Substituting equations (118) and (119) into (124) gives

BP(n + l) = a • BP(n) - (l-a)b (̂ -T̂ V̂ r (125)

Applying the z transform with the initial condition denoted BP(0) and

solving for BP(z) yields
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Transforming back to the time domain

BP(n) = BP(0) - e" ln - (127)

Check - initial condition at n = 0: BP(n = 0) =BP(0)

final value at n •= °°: BP(n = °°) =
Vr

Y2(l-a)

The transient response is again an exponential function with tfm'e' 'con-

stant T = -1/ln a. Equation (127) is applicable so long as both'sample

points are on the background slope. •''•

Transient response for an initial condition with ' •''

(i/Yj) -A<SJP(<?) < (i/Yj)~ In the previous section, the transient

response and the requirements for the "driving" mechanisms were derived

for the case with two sample points on the background slope.

This was valid until point BP(n) = (b/Yi) -A. After this point has been1 • , < • ' • )

V

0 BP(n)

Figure 67.- Initial condition with (b/Yi) -A<BP(0) < (b/Yi).
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reached, the situation changes because one sample point is now on the

ventricular slope and we must determine the new requirements for reaching

the equilibrium situation as defined by equation (89). This will be

done by deriving the conditions under which an equilibrium situation

with (b/Yj) -A <BPequ-Q < (b/Yj) can occur (fig. 67). The sample voltages

are now:
VR(n) = Yi[BP(n) + A] (128)

and 4< - ( •''

VL(n + l) = Y2[BP(n) -A]+b(l-^-) (129)

The reference level is

Vref(n + l) = Y2 ' BP(n)+b(l-^-) (130)

Substituting these formulas into equation (85) and solving for BP(n)

yields
a

BPequil = ~

We want to determine the requirements for an equilibrium position so

that

b . _ _„ „ b

Therefore, define

= ̂ r--AA (133)

with 0 <. A <. 1. Solving for A from equations (131) and (133) gives

' (l-a)b-f
A = 2 . (134)

The denominator in equation (134) is negative for

a >: —̂ - (135)
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while the numerator is negative for

b- V,
AY,

To solve for 0 <. A <. I, distinguish two cases:

2Yo b - V.

(136)

(I)

Under these conditions, A is positive but the numerator and denominator

are negative. Solving for A _£ 1 yields

V.
b- (137)

The allowed region for a and Vc, so that an equilibrium condition is

obtained under the above conditions, is shown in figure 68.

Figure 68.- Region of a and Vc values for which a labile equilibrium
with (b/Ŷ  - A < BPequil < (b/Yi) is possible.
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2Y2 b - vc
and ° AYl / Y2b+T~ ̂ -YT

Under these conditions, A is positive because both the numerator and

denominator of A are positive. Solving for A _< 1 yields

vca >. 1 - - — ̂ — (138)
b - Ay 2

However, this region is outside the defined re'gion in figure 63 so a

bias point is not acceptable here.

Assuming an initial border point with (b/Yx) - AiBP(O) <. (b/Yj) and

a set of parameters (a, Vc) within the defined region in figure 63, but

outside the region of equation (137), the calculated Vref(n+l) is

always greater than Vref(n) during the time that (b/Yj) - A < BP(n)< (b/Yj).

This then provides the "driving" mechanism for the border point to return

to a position on the ventricular slope.

An equilibrium situation can occur under the conditions given in

the first case. The required set of parameters (a, Vc) for a particular

A is obtained by solving for a from equations (131) and (133), which

results in

V (b-AAY?)- 121 - (139)

, b+f (Y^Y^-^y ( Y i + Y 2 ) b+| (Y l-Y 2)-Y ( Y i + Y 2 )

a set of straight lines with direction 'coefficient

6 =- - - - ~r - (140)
t _ , A / X A A , . ,
b+y (Y! -Y 2 ) --y (Y! +Y 2 )

For the limits A = 0, 1, respectively, equation (139) simplifies to
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A = 0:

b-V r
Y2 (equals eq. (97)) (141)

~
A = 1:

Vc
a = l-b~T^— (equals eq. (123)) (142)

All lines defined by equation (139) have the point a =2y2/(Yi+Y2)>

,VC(-= (b( 7,̂ AY2) [(YI - Y2)/(Yi + Y2)] in common (fig. 68). It follows'from

equation (140) that an increasing value of A corresponds.to an

increasing absolute value of slope 6.

Consider the case for a particular a0 and Vc0 and for an equilib-

rium position with 0 s. AQ <. 1. The corresponding bias line that

satisfies these parameters is then, from equation (139),

Vrn • b - AnAy?
00 = A A + A ^A (143)

£. ^ £. ••• ^~ £ £ . * • £ •

However, it can be shown'that this is a labile equilibrium. If, for

, some reason, the border point changes position and becomes

,BP(n) = (b/Yj) -AA, with A < A0, then the equilibrium requirements

associated with this new position correspond to an (a, Vc) function with

a smaller absolute slope than the slope defined by equation (143). The

newly calculated Vref(n + l) is therefore higher than the equilibrium

reference level associated with this new position and the position of

the border point continues to increase until an equilibrium situation

with BPequ:Q > (b/Yj) is reached. Similarly, if the position of the

border point changes and becomes BP(n) = (b/Yj) - AA " with AQ <A_<.1,

then the equilibrium requirements associated with this new position

correspond to an (a, Vc) function with a greater absolute slope than the
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slope defined by equation (143). The newly calculated Vref(n+l) is

then lower than this new equilibrium reference level would be and the

position of the border point continues to decrease until an equilibrium

situation with BPequil < (b/Y^-A is reached.

Summarizing: if a border point is detected on the background slope

with (b/Yj) - A < BP(n) < (b/Yj), then this situation is stable only if the

existing a and Vc satisfy equation' '(134) ' for the corresponding value

of A at this point. If the selected a and Vc correspond to an equi-

librium position (b/Yj) - A < BPequil < BP'(n) , then the position of the

border point increases until a stable point is detected with

BPequil > (b/Yi)- On the other hand, if a and Vc correspond to an

equilibrium position BP(n) < BPequ:Q < (b/Yj), then the position of the

border point decreases until a stable point is detected with

BPequ:Q < (b/Yj) -A. However, a detected border point on the background

slope will always return to the ventricular slope by requiring that

The transient response from an initial condition BP(0) can again

be derived from equation (124) . Substituting equation (128) and (129)

into (124) gives

BP(n-Hl) =f l +.BP(n)+ (AYl + b) - +- b- (145)

Applying the z transform with the initial condition denoted BP(0) and

solving for BP(z) yields
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BP(2), "*(°>.. +(I!
z -T

(146)

Transforming back to the time domain,

BP(tv) = BP(0)e

1-e

Check - initial condition at n = 0: BP(n = 0) =BP(0)

(147)

final value at n = «>: • BP(n = °°) =

The time constant is given by

_ -i

[f (AYl

(148)

+ Y2) >which is negative for a > 2Y2/(Y1+Y2)-
 For a > 2

e L TI 12 J -^g an exponential increasing function with time,

which again shows the instability of an equilibrium position in the

indicated range in figure 68. Only if

BP(0) (149)

then

If

BP(n) = BP(0) for all n ̂  0 (150)
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F—
BP(0) < L2 AYlr

+\ *\,'1' (151)

for a particular a and Vc, then BP(n) is an increasing function with

time, and if

[f (AYl+b)
BP(0) > — — V — (152)

for a-particular a and Vc, then BP(n) is a decreasing function with

time. For a < 2Y2/(Yi+Y2)> the time constant is positive, indicating

that a stable operating point with (b/Yj) - A '< BP'U .Q < (b/Yj) is possi-

ble under the necessary conditions. However, it has been explained that

these conditions do not meet the requirements for a stable operating

point at (b/Y-,) < BPeqU-Q < (b/Y-,) +A. Therefore, this possible stable

operating point with (b/Yj) - A<BPequ:Q< (b/y,) will never occur.

Effects of Changes in Parameter Values

dc level changes with c volts- The voltage level at the knee in

the border model is referred to as the dc level (fig. 69). We will

assume that the border model for line n has the original dc level, but

line (n + 1) has been shifted over c volts. The equilibrium reference

level for line n is given by

°L
2

Yl

The new functions for the border model are

V2' = Y2t+b(l -yf-) + c (background area) (153)
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Figure 69.- Border model has been shifted upward over c volts, starting
with line (n + 1).

vl' = Yjt (ventricular border) (154)

Assuming that the dc shift will remain in effect for all scan lines

following line (n + 1), we can calculate a new equilibrium reference

level for this new situation. This new equilibrium level V* ., can

be computed under the assumption that

b + c<V (155)
"equil " " "Tl

Solving this inequality yields the maximum allowable value of c. The

new sample levels in the equilibrium situation are

VR -Y1(BPlniHi+A)+c (156)

(157)
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where the border point in the new situation is denoted BP* .-,. The

new equilibrium level can be written

c (158)

Substituting these formulas into equation (85) and solving for BPe qu;Q

yields

Drequil = r _c- , ^^ (159>

and the new equilibrium reference level,

equil

The equilibrium reference level then shifts over

so that

lVeqUil-
Vequill < lcl for all a<l (162)

The equilibrium border position shifts over

' RP ,
equirBPequil

where BP U;Q - BPeqU^^ is negative for positive c and positive for

negative c. Ideally, we would like to have BPequ^^ - BPequ-Q equal to

zero; but this requires that a = 1, which is not acceptable for several

reasons. We have calculated before that the time constant for transient

responses with both sample points on the same slope is given by
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T = -1/ln a. With a = 1, this goes to infinity. It was also

calculated that the equilibrium reference level in these cases is

Vc/(l-a). With Vc finite, this means that the reference level goes

to infinity for a = 1. Therefore, we will always require a < 1,

resulting in a negative BPgqu±1 - BPequii for c positive and a positive

BPequil ~ BPequil for c negative. For a stable situation it is required

that
I V ' .

b + c<v; q u i l <b + c + AYl (164)

Substituting equation (160) and solving for a gives

b + c - Vc V

2

We now must distinguish between a positive and negative value of c.

Positive c- Because vequil~ vequil<c> solve for the left-hand

side of inequality (164) to determine the maximum allowable value of c,

that is,

ct
, . 2

— (166)

If the maximum allowable positive change in dc level is Cp, then

- b . (167)
* j. v*

The values of cp as a function of a are shown in figure 70. The

a value for which cp = 0 equals the lower bound in the inequality in

equation (94), as it should be. Choosing this a value allows only a

negative c. Similarly, the maximum allowable value of cp is
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Figure 70.- The function Cp = f(a) gives the maximum allowable positive
change in dc level as a function of a.

determined by the upper limit a = 1- [Vc/Cb + Ayj)] in equation (94); in

£his case, no negative c is allowed. Choosing a = 1 - (Vc/b) results

in a maximum allowable value of

•ft-OH- (168)

Figure 71 shows the region of (a, Vc) values that satisfy equation (165)

{" * and the original region defined by equation (94), respectively. The a

and Vc parameters should be chosen so that the bias point belongs to

both regions under varying c. It can easily be seen from figure 71

that c- = 0 for

(169)
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1 -

1 -

Figure 71.- Allowed range of a and Vc values changes when the dc level
shifts upward over c volts.

The maximum allowable cp decreases with increasing Vc and with

increasing slope Y?- It increases with increasing slope YJ.

Negative c- Because Ivenuil~
vequill < lcl ^or negative 'c, we now

must solve for the right-hand side of equation (164), that is,

f
(170)

Defining

cn ^ -c > 0 (171)

equation (170) can be written as
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f
< b - CT (172)

If the absolute value of the maximum allowable negative change in dc

level is CN, then

Vc
CN =

 AY1+b--j-T^ (173)

The values of Cj, as a function of a are shown in figure 72. The a

L

value for which CN = 0 equals the upper bound in the inequality in

Figure 72.- The function CN = f(a) gives the maximum allowable negative
change in dc level as a function of a.

equation (94). Choosing this a value allows only a positive c.

Similarly, for

b-Vc
a = TT̂ -—: ~̂: (lower bound in eq. (94))
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the maximum allowed is

CN = AYl 1 + (174)

no positive c is allowed for this a value. Choosing a = 1 - (Vc/b)

results in a maximum allowable value of Cpj = Ay^ which is independent

of Vc, b, and y2.

The allowed region of (a, Vc) values which satisfies equation (165)

with negative c and the original region according to equation (94),

respectively, are shown in figure 73. As shown in this figure, the

maximum allowable
Vc

— v
1 -

= Ay. for a = 1- (Vc/b) .

1 -

b+c+A71

Figure 73.- The allowed range of a and Vc values changes when the dc
level shifts downward over c volts.
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Comparing the maximum allowable values for cp and c^ with

a = 1 - (Vc/b) shows that cp increases with decreasing Vc while C^

remains constant. For CN > Ay-p there is no' point on the bias line

'a = 1- (Vc/b) which satisfies equation (165). However, for any c > 0,

we can find a bias point on this line that satisfies equation (165).

This point can also be derived easily from figures 70 and 72, which

sugg'ests th'at one should measure the minimum value of b, denoted bmin»

for all scan lines traversing the left ventricle in a video image and

define the bias line as

• ' • - • ' a = 1 - r^- (175)
Dmin

, .We certainly have no a priori knowledge of bm- n̂ for a particular field,

but this value can be approximated very well with the measured

[(VL1/2) + (VL2/2)]min of the previous field. Implementing

Vc = bm-[n(l-a) then requires only an adjustment of the a factor for

the appropriate choice of the reference levels.

*The maximum occurring Cp per video field then determines the

required value of a. Assuming constant slopes y2
 and YI» a minimum

and maximum dc level of bm-^n and bmax, respectively, the minimum

"*- ' required value for a then follows from:

i i ^min . f.. ' z i / T -i r \P = v» — \\ = AY II ~ I ( 1 7n i*-p umax umin o/"" - s ^ T i i - 1 - - v . l \^-i^>)

With this amin value, an equilibrium level of bmax volts results at

those lines with the highest dc level and an equilibrium level of

_ _ _

equil amln

176



for the scan lines with the lowest dc level. If a > 0̂ -5̂ , an overall

higher reference level results, that is, the detected border will

deviate more from the desired border.

It is also important to know the magnitude of the initial change in

reference level and border position at line (n + 1) . It is assumed that

the border model on line n has a dc level of b volts, where

b >. bmin, and the dc level for line (n+1) has been shifted over c

volts. The calculation will be set up using the general notation with

a and Vc without initially using the suggested relationship

a = 1 - (Vc/bmin) . The sample voltages for lines n and (n+1) are,

respectively,

VR(n) = Vequil + AYl ' (178)

and

VL(n + l) = Y2(BPequil-A)+b 1-- + c (179)

Substituting formulas (89) and (90) for BPequil and Veq'uil>

respectively, into '(178) and (179) and VR(n) and VL(n+l) in the

formula for Vre£(n+l) yields

Vref (n+1) = * .- „ , vl.; + T c - (180)

[ -, - j v,

The initial change in reference voltage Vref(n+l) compared with

vequil then equals

D-Vequil= c (181)

which is independent of the slopes and the sampling distance A. If c

is positive, what will be the requirement on c such that
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Vref(n+l) ̂  b + c ? (182)

This means that the new border point on line (n + 1) remains on the

ventricular slope. If the maximum allowable positive change in dc level,

satisfying equation (182) is denoted cj, then substituting equa-

tion (180) into (182) and solving for cj yields:

cl =
f

(183)

The values of

paring c (eq. (167)) and

a > 2Y2/(Y!+Y2),

as a function of a are shown in figure 74. Com-

j (eq. (183)) shows, that for

c, (volts)

Figure 74.- The function GI = g(a) gives the maximum allowable positive
change in dc level so that the border point remains on the
ventricular slope on line (n+1).
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Cp > G! (184)

Under the same condition a > 2y2/(Y1
+Y2)> it

 is true that, for a

particular c,

Vequil - Vequil > vref <n+ D ~ vequil (185)

so the initial change in reference level is smaller than the final

change under this condition. Assuming a > 2y2/(Yi+Y2)
 an^ a satisfies

01 = 1 - (Vc/bm-£n) , the maximum allowabl'e value for c can be determined

so that BP(n + l) remains on the ventricular slope. Substituting

Vc = (l-a)bmin into equation (183) yields

f <186>

For parameter b, the allowable change in dc level is maximum if

b = bmin' which gives

a . /, Y2>

cl = , \vr » / Y.x-l d87)

Returning to the general case with cj defined by equation (183), the

new position of the border point on line (n + 1) can be derived from

V f (n + 1) - c
BP(n + l) = -^± (188)

Substituting equation (180) yields

BP(n+1)= —— (189)

and
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BP(n + l) -BPequil =- y; (190)

The one-sided expectation window width should normally be greater than

this possibly occurring change in border position. If this is not the

case, then the position of BP(n + l) will be determined by the beginning

of the expectation window.

If GI < c < Cp with 01 > 2y2/(Y1+Y2)>
 tnen BP(n+l) will occur

on the background slope. What are the requirements that the border

point will return to its equilibrium position as defined by equa-

tion (160)? It was explained earlier that the required a and Vc

depend on the particular initial condition of the border point on the

background slope, but there is a minimum requirement that the border

point always returns to the ventricular slope. This requirement can be

derived by observing the situation with an equilibrium position at

BPeqU£i = (b/Yi) -A. The new equation for the upward-shifted background

slope 'is

V2' = Y 2 t + b l - + c (191)

If BP(n) = (b /Yj ) -A, the new sample levels will be

VR(n) = b + c (192)

and

VL(n + l) = Y2 -2A + bl- + c (193)

Solving for Vref(n + l) = b + c - AY2 yields

a = 1-. . ° , (194)
b + c - AY
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With a >. 1 - Vc/(b + c - AY2) , the border point will always return to the

equilibrium position on the ventricular slope. With c >. 0, it will be

clear from equation (194) that the allowed region of a values will be

limited under these circumstances. If a = 1- (Vc/bm̂ n) , then

a >. 1 - Vc/(b+c- Ay2) will be satisfied only for

c < AY2 - (b - bmin) - - (195)

For b = bm-Ln, the maximum allowable positive change is r only ' Ay2 and

for, b = bm-j_n + AY2, no positive change at all is allowed. In reality,

the situation with BP = (b/y^) -A is avoided by the use of the expec-

tation window, which has a one-sided width e < A. This means that from

one line to the next the maximum possible change in border position is

. only e; it is thereby important that the center of the expectation win-

dow approximates the next border position as accurately as possible.

This favors again the first-order extrapolation principle over the

zeroth-order principle. Also, the dc level changes from lin^ to line

will generally be relatively small so that c < cj is usually satisfied.

In situations for which the border points tend to fall off toward

BP = (b/Yj) -A, because of a sudden positive change in dc level, the

instability can be avoided by the use of the dynamic expectation window

(chapter 10) . This will limit the excursions from previous border

points so that a stable contour can again be obtained.

It follows from equations (167) and (183) that, for

a < 2y2/(Y1+Y2),

and

cp < ci (196)

Vequil - Vequil < Vref (» + D - V£quil (197)
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The initial change in reference level is greater than the final

change under this condition. Satisfying the conditions for Cp results

in a stable contour point for BP(n + l) with no extra requirements. The

effects of changes in the dc level are summarized as follows. Assuming

that the lowest dc level for a particular image is at bm̂ n volts and

a = 1 - (Vc/bm̂ n) , then the maximum allowable positive change in dc level

such that the detected border, point remains on the ventricular slope is

given by

f̂ (l-̂ f)C ' (198)

If the reference level on line n is b volts, then the maximum allow-

able positive change such that the border point on line (n + 1) remains

on the ventricular slope is given by

_

'" -ft-! ('+$
for a > 2Y2/(Yi+Y?) • Figures 70 and 74 show that the maximum values

of Cp and cj increase with increasing a. Under these conditions, the

detected border points are near (b + c)/Y1 for the scan lines with the

highest dc levels and at a somewhat higher level for the lowest dc

levels.

Ventricular slope changes from YI to Y3 V/sec- Assume that the

dc level is bmin + c volts (c >_ 0) and the slope on line n is

Yj V/sec and on line (n + 1) and all following lines, Y3 V/sec (fig. 75).

For simplicity, b A bmin. The equation for the new border function is

V3 = Y3t + b(l-yM+c (200)
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BP(n)

Figure 75.- Left ventricular slope changes from YI to YC, V/sec.

The new equilibrium position BP" ui^ can again be' derived by

substituting

VR =

and

Vequil

' (201)

(202)

(203)

into equation (85), assuming (b/Yj) <BP" ull< (b/Y:) +A. Solving for

BPequil

BPequil

Check - for

(204)

= Yj
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BPequil = - r a/ T2VI - = BPeq«±l (s£e ^ (159))r a/ T2
Yl|_ 2 V Yj

The equilibrium reference voltage for ^P auil follows from equa-

tion (204) as

- T, •
./.
2 V1 + Y3/

What are the requirements in this case for

b + c < V < b + c + AY ? (206)

Since equations (205) and (206) are identical to equations (160) and

' i
(164), if we replace YS by YI> the solution for equation (206) follows

simply from equation (165) by replacing YI with Y3» that is,

°LA.. (207)

Consider the case for c = 0. Equation (207) then simplifies to

b-Vc ^ _ Vc
(208)

Referring to figure 63, it is clear that

rotates around the point a = 1, Vc = 0 with varying slope YS-
C

Similarly,
,'

b-Vr
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rotates around the point a = 0, Vc = b with varying Y3 and y,•

Therefore, a = 1- (Vc/b) satisfies equation (208) for all Y2
 and

Y 3>Y 25 this follows also from equation (205). Substituting c = 0 and

Vc = (l-a)b into equation (205) results in

vequil ~

For all Y 3
>Y 2

 and «<!, it follows that

Y3/2

which again satisfies equation (206). Now consider the case for c > 0.

Assuming that the bias point (a, Vc) is chosen on line a = 1- (Vc/b) ,

equation (205) can be written

Requiring again that b + c<Ve'quil, this yields

-%)
— <2U)

or

2 2

The requirement v" un < b + c + Ay3 is always satisfied for a < 1 and

Y3 > YO- It follows from equation (215) that, for a particular value of

c, a larger a is required for a decreasing slope Y3 and a smaller a

is required for an increasing slope Y3- This follows also from fig-

ure 76, which shows the allowed area for a and Vc according to
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1 - Vc
b+A73

\

-(b+A73) -b

(b+c+A73)

Figure 76.- Allowed region of a and Vc values for a ventricular slope
of V/sec and a shift in dc level of c volts.

equation (207) with c = 0 and c > 0. With a required bias point on

line a = 1- (Vc/b) within the indicated regions, an increasing a is

clearly needed with decreasing slope Y3 and a decreasing a is needed

with increasing slope Y3 because the slope of

b + c - Vr
changes (see eq. (207))

A maximum a = 1 is required if Y3
 = Y2- Assuming a constant back-

ground slope Y2> tne a should be chosen on the biasing line

a = 1- (Vc/b) so that'an equilibrium reference level of b + c volts is

obtained for maximum c and minimum j.
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What will be the initial change in border position after the slope

has changed to Y, V/sec? The reference level for line (n + 1) has not

changed and is still equal to the equilibrium level Vequi^ as given by

equation (160) with Vc = b(l-a), that is,

Vref(n
f

(216)

which means that Vre£(n + l) > b + c, independent of the change in slope,

because it was assumed that V* U;Q > b + c. Only the position of the

border point on line (n + 1) changes. The new border point on line (n+1)

then will be

BP(n+l) =
- c

ct

^
(217)

The equilibrium position on line n can be obtained from equation (159)

by substituting Vc = b(l-a), that is,

BP

1*̂ (1 -%)+(« -D
equil (218)

The initial change in border position is therefore

BP(n+l)-BP;quil (219)

For

and for YS < Yj>

BP(n+l)-BP;quil > 0

(220)

(221)
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The final change in border position after the slope has changed to

is then

f f - l)c
(222)

Background slope changes from Y2 *° Yk V/sec- Assume that the dc

level is bm£n + c volts (c >_ 0) and the background slope on line n is

Y2 V/sec and on line (n + 1) and all following lines, Y^ V/sec (fig. 77).

Figure 77.- Background slope changes from Y2
 to Y^ V/sec.

The ventricular slope is fl V/sec. For simplicity, b=bmin. The equa-

tion for the new background function is

V \

c (223)

The equilibrium level follows simply from equation (160) by substituting

Yu for Y?> that is,
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With the bias point on line a = 1- (Vc/b) , this becomes

So far we have assumed that

The position ,̂ BPg' ui^ can then be derived using the formula

Vj = Yjt + c, which results in

If equation (224) is used for Vg* ^, the requirements for satisfying

equation (226) are

b + c - V vc
(228)

Consider the case for c = 0. Equation (228) then simplifies to

b - Vc Vc
«*<!-,..:.. (229)

Referring again to figure 63, clearly a = 1- (Vc/b) satisfies equa-

tion (229) for all YJ and 0 <, YU < YI- For c > 0 and a = l- (Vc/b),

the formula for V^' ui.̂  is given by equation (225) . Solving for

V • , T»"lb + c < vequil . yi(
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or

(AYl-Ay )
c < — - (231)

Equation (230) shows that, for a particular value of c, a larger a is

needed with increasing slope Ylf
 and a smaller a, with decreasing

* ! ' i . -
slope y. (fig- 71). The required value of a is determined by the

intersection of a = 1 - (Vc/b) and

b + c - V,,
a =

2

The intersection of the last function with the ordinate axis is given by

b + ca = : .

Changing y2 makes this intersection point occur higher or lower on the

ordinate axis. A slope y^ > Y2 results in a higher intersection point

with the a axis and therefore also a higher intersection point with

the unchanged function of a = 1 - (Vc/b). This results in the require-

ment for a higher value of a. Assuming a constant ventricular slope

y,, the a value should be chosen on the biasing line a = 1- (Vc/b)

so that an equilibrium reference level of b + c volts is obtained for

maximum c and maximum Y[( •

What will be the initial change in border position after the slope

has changed to y. V/sec? The equilibrium position on line n, with

a = l->(Vc/b), is given by equation (218) as
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The sample levels on lines n and (n + 1) are

VR(n) = Y!(BP;uil + A)+c (232)

VL(n + l) = Y 4 ( B P q u l l - A ) + b l - - c (233)

Substituting these equations into equation (85) gives the new reference

level on line (n + 1):

Vref(n+l) = b+^ = "' "'vox' '—^ (234)

Check - for Yt = Yo this results in

f (AYl + c)(l-v r e f ( n+D = b+-_- -_-- = vqu i l
2 V1 YI/

The initial change in voltage level is therefore

-̂ (l-a)(AYl+c)(Y2-Y1.)
Vref(n + l) -v;uil = — i - . - (235)

for which

' 0 for Ylf < Y2 (236)

and

0 for Ytf > Y2 (237)

Thus, Vref(n+l) decreases when slope Y^ increases and increases when

Y4 decreases since Vĵ n + l) changes accordingly. The final difference

between Vgqull and Vgquil is
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Comparing Vref (n+ 1) - V,Lquil and Vgquil - Vgquil results in

~2

(239)

which shows that the initial change in reference level is always less

than the final change.
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CHAPTER 10: DYNAMIC REFERENCE LEVEL

As shown in chapter 9, an acceptable border point is detected under

all reasonable conditions if the reference level is calculated according

to the formula

• Vref(n + l) = | [VR(n)+VL'(n+D] + Vc (85)

In the contour detector prototype II, two sample points are defined in

the background area. For the left border, the new formula for the

reference level is

Vref(n+l) = f vR+ + + Vc (82)

where VR is the video sample on the ventricular slope of LSPR (line n)

and VL1 and VL2 are the video samples on the background slope at LSPL1

and LSPL2, respectively (chapter 8, fig. 49). These last two samples

are taken on line (n + 1).

The two sample points LSPL1 and LSPL2 are important in areas of low

contrast where the actual video signal may be different from the assumed

border model. At those places, the slope Y£ often becomes negative,

resulting in a reference level that is too i.igh as calculated from equa-

tion (82). This situation is characterized by VL1 > VL2 and is recog-

nized in the system. Under this condition, an error term

verror = (VL1/2) - (VL2/2) is determined and subtracted from the term

(VL1/2) + (VL2/2) in the formula for the reference level. The effect is

that the reference level is determined as if the border signal had a

background slope of y2 = 0. On these bases, the final formula for the

reference level can be written as
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V r e f(n+l) =f \Jifi + Jif£-Verror + VR)+V c (240)

where

_ VL1 VL2 . VL1 VL2
verror 2 2 ' 2 2

(241)
m i m 9

if

The., calculated value for the reference level on each line is based

on, a border model for which VR- [(VL1/2) + (VL2/2)] >K, where K is a

dc voltage level. Because of intervening structures, situations occur

where VR- [(VLl/2)-4-(VL2/2) ] < K. This situation is recognized and, to

avoid large excursions from previous points, the width of the expecta-

tion window is automatically made much smaller on the video lines

satisfying this condition.

The implementation of the circuitry that calculates the dynamic

reference level for the left border on a line-to-line basis and the

dynamical adjustment of the expectation window are described here. The

circuit diagram is given in figure 78.

Implementation of the Dynamic Reference Level

The sampled voltage level at LSPR must be held over almost a full

line period until the next border point g[(n+l)T] has been detected.

Only the short period from g(nT) until LSPR is then available for the

track-pnd-hold amplifier to settle to the new sample level. This width

LSWR is manually adjustable from 80 to 960 nsec in steps of 80 nsec. In

most cases, an optimum border detection is achieved with LSWR equal to

approximately 560 nsec. However, sometimes this width must be much

smaller. For the used sample/hold modules in this particular
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application, an acquisition time of at least 200 nsec should be

maintained for an accurate sampling of the video signal at LSPR. There-

fore, the sampling at LSPR is done with two sample/hold modules LR1 and

LR2; the control signals for the resulting four sample/hold amplifiers

for the left border are shown in figure 79.

g((n-1)T]

~U
g(nT) / LSPR

SCAN LINES

CONTROL
SIGNAL

LL,

LL2

LR1

, _,
LR2

TRACK

Figure 79.- Control signals track-and-hold amplifiers for
the left border.

The hold command for S/H amplifier LR1 is given at LSPR and is

held over a 2.6-psec period. The first 0.5 ysec of this period allows

the S/H switching transient to settle down. The following 2 psec is

the allowed acquisition time for S/H amplifier LR2, for which a

slower type of S/H amplifier can be used. LR2 then samples the output

voltage of LR1. An additional 100 nsec is allowed for the aperture

time of S/H amplifier LR2. The hold commands for S/H amplifiers
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LL1 and LL2 are given at LSPL1 and LSPL2, respectively, and are being

held until the end of the hold period for LR1. As a result, all four

video samples are available for further processing (dynamic expectation

window width) during the last 100 nsec of this hold period.

The 1-MHz low-pass filtered video signal from the analog preprocess-

ing circuitry (chapter 5) is applied to the input of S/H module LR1

and the positive input of the analog comparator (OP AMP 6) (see fig. 78).

By use of an accurate resistive divider, the clamped video signal with

half the amplitude of the original signal is applied to the inputs of

S/H modules LLl and LL2, resulting in output signals VL1/2 and VL2/2,

respectively.

The video samples VR, VL1/2, and VL2/2, and the negative error

signal are applied to the negative input of OP AMP 1, which is used as a

-1 amplifier. The output of this operational amplifier is therefore

error/
/•

The error term is or is not included in this equation, depending on the

setting of.switch SI. The a/2 factor in the formula for the reference

level is implemented with a resistive divider at the output of OP AMP 1,.

Voltage follower OP AMP 2 acts as a buffer and its output signal equals

(243)

where 0 ̂ .ail. The negative^ adjustable dc level of -Vc volts is

obtained with a potentiometer connected to a zenerdiode stabilized

reference .voltage of -6.2 V. The -Vc volts and the output signal from

OP AMP 2 are applied to the negative input of OP AMP 3, which is used as a

197



-1 amplifier. The output of this operational amplifier then equals

Vc (244)

which is the required dynamic reference level. This signal is connected

to one of the inputs of a single-pole, double-throw junction FET switch.

Depending on the state of the switch, the output is then either the

dynamic reference level 'or the output signal from OP AMP 4, which

provides an adjustable dc level. This dc level is applied when a con-

stant reference level is selected for the border detection and for the

detection of the first left-border point when the dynamic reference

level mode is selected. The desired switch setting is achieved by apply-

ing the appropriate logic signal at the input of the high-speed switch

driver.

OP AMP 5 functions as a buffer for the reference level signal from

the FET switch. The buffered reference level is connected to the nega-

tive input of the high-speed comparator AM685 (OP AMP 6) . This is a very

fast analog comparator with a maximum 6.5-nsec propagation delay at 5 mV

overdrive, a 3.0-nsec latch setup time, and complementary ECL outputs.

The latch function allows the comparator to be used in the S/H mode;

with the latch enable input high, the comparator functions normally.

When the latch enable is driven low, the comparator outputs are locked

in their existing logical states. The comparator is reset at each video

line during the horizontal synchronization pulse. As described in

chapter 5, when the left ventricle appears as a bright structure against

a dark background (cineangiogram) , the video signal is clamped at ground.

During the horizontal synchronization pulse, the reference level is then
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always higher than the video signal and enabling the comparator with the

RESET pulse resets the comparator. If the ventricle appears as a dark

structure against a lighter background (positive image from video

disc/tape), the video signal is clamped at +2 V in the analog preprocess-

ing circuitry. To reset the comparator under these circumstances, a

reference level above +2 V is needed. The reference level is then

pulled toward +3.3 V by saturating transistor Ql during the horizontal

sync pulse. The RESET pulse then again enables the comparator, which

returns to the reset state.

To detect the left ventricular border, the comparator is enabled

during the expectation window period only (explained in chapter 8 for

the right border). For the left border, the comparator changes state as

soon as the video signal becomes higher than the reference level, and

the comparator is immediately disabled. The moment the comparator state

changes, indicates the detected border position. The transition of the
i

output signal results in the triggering of a monostable multivibrator

(not shown in fig. 78), which generates a 100-nsec wide pulse for mixing

into the video signal, so that a brightened point appears on the TV

monitor.

Implementation of Error Term

The error term is generated with operational amplifiers OP AMP 7 and

OP AMP 8. The sampled video level VL1/2 is applied to the positive

input of OP AMP 7 and VL2/2, to the negative input. OP AMP 7 is used

as a difference amplifier, resulting in an output voltage

VL1 VL2 ,„.,,.
V0? = "2 2" ( ^
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We are now interested to know when Vgy is positive, that is

(VL1/2) > (VL2/2). This is determined by use of the precision limiter

circuit (appendix B). With the positive input of OP AMP 8 connected to

ground, the output of the precision limiter is

and

V08

-

V08 = 0

/VL1 VL2\~
2 2 error if

,,
if

VL1 VL2

(246)

For an accurate limiter performance, an ultrafast operational amplifier

(LH 0032) and hot carrier diodes are required. The video lines for

which (VL1/2) > (VL2/2) can be indicated on the monitor screen with a

brightened bar if a control signal is generated with the high-speed

analog comparator NE 529 (OP AMP 9) (see fig. 80).

..

•

Figure 80.- The horizontal brightened bars indicate the video lines for
which (VL1/2) > (VL2/2) for the left border.
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Dynamic Expectation Window Width

At places of low contrast along the left ventricular border, forced

border points may be generated at the beginning or end points of the

expectation window. As explained in chapter 3, this occurs when the

video signal does not cross the reference level during the expectation

window period. If these forced border points are generated over a num-

ber of consecutive video lines, then the defined border is a straight

line when the zeroth-order line extrapolation principle is used and a

parabola for the first-order line extrapolation principle. The changes

in border positions from line to line are determined by the selected

expectation window width. It is clear that, after a few lines, the

defined border may be too far from the actual border to be able to

return if the contrast improves.

This instability can be avoided by automatically narrowing the

expectation window'width under low contrast conditions so that only

limited excursions from previous border points are allowed. The chosen

criterion for this dynamical adjustment is that the voltage levels

(VL1/2)+ (VL2/2) and VR are of comparable magnitude, that is,

VR-

where K is an adjustable positive dc level.

Because the new expectation window widths must be known before the

positions of LEPL, LSPL1, and LSPL2 for line (n+1) are calculated at

the end of line n, the sampled video levels on line n are used in

equation (247). This means that the applied expectation window width on

a line is determined by the video samples on the previous line. The
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fact that no video sample at the current line is used can be justified

since the difference between the video samples on either side of the con-

tour changes very little from line to line. Also, in this simple case,

only a binary value is assigned to the calculated difference

VR- [(VL1/2)+(VL2/2)]; if this difference satisfies equation (247),

then the width is adjusted; otherwise, it is not.

L,.' The above described criterion has been implemented with OP AMP's 10
i i

and 11 (fig. 78). Operational amplifier OP AMP 10 is used as a differ-

ence amplifier with the output voltage of S/H amplifier LR1 applied

at its positive input and VL1/2 and VL2/2 at its negative input. The

output voltage is given as

.. _ „„ /VL1 VL2\ .....
V O I D - R \~2~~ ~T~/ (248)

which is connected to the B input of the analog comparator NE 529. The

adjustable dc level of K volts is obtained from a zenerdiode-

stabilized dc level of 6.2 V with a'lk potentiometer. The S/H control

signal for LR2 is used as a strobe signal for the comparator. This

pulse appears inverted at the A output of the comparator if

VR- [(VL1/2) + (VL2/2) ] >K volts; in this case, the width of the expec-

tation window need not be adjusted. For sample levels satisfying

equation (247), the A output remains high.

The actual implementation for dynamically adjusting the expectation

window width is given in figure 81. With the output voltage of the

analog comparator OP AMP 11 (fig. 78) applied to the D input of flip-

flop DFNla, this voltage level is sampled at 100 nsec after the beginning

of the strobe signal for the comparator, resulting in a high output
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level, if VR- [(VL1/2) + (VL2/2) ] <K and remaining low otherwise.

Flip-flop DFNla is cleared by the low level from switch DWS if one does
)

not want to use this dynamic adjustment of the expectation window width
i ,

and by the signal from ANM2c, which prevents it from using during the

initial detection period, where necessary large excursions occur (mitral

valve)Bunder often .fairly low contract conditions.

The Q , output of DFNla functions as the SELECT signal for multi-
• ' 3 I t' ' " • I i I . j _ . . . . ' - , " - '

plexers MUNI and MUN2. The A channel is selected if no dynamic expec-

tation window width is required and the B channel if it is required.

The expectation window widths LEWL and LEWR, each represented in 4 bits,

are connected to the A-channel inputs of MUN2 and MUNI, respectively.

With the A channel selected, the expectation points LEPL and LEPR are

determined in the usual way as described in chapter 8 for the right

border. The 4-bit binary full adder ALN1 provides LEWL+LEWR, necessary

to determine LEPR.

In case of a dynamic adjustment of the expectation window width,

the expectation window is chosen symmetrically around its center. The

width is adjustable manually in four steps with rotary switch LAEW:

each position change of the switch corresponds to a 40-nsec change in

actual width. Under practical conditions the static expectation window

widths LEWL and LEWR are adjusted to a much wider width than

4x40 nsec = 160 nsec; therefore, limiting the dynamic width to a maxi-

mum of 160 nsec certainly means a much more restricted expectation win-

dow width. The switch position of LAEW is again converted to a 3-bit

binary number in a similar manner as for the other rotary switches.

This 3-bit number plus a fourth bit, which is always zero, is selected
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by MUNI and MUN2 if the Q output of DFNla is high, and the new

expectation points LEPL and LEPR on the following video line are deter-

mined according to this new width. The current implementation of the

dynamic expectation window width is clearly a relatively simple adjust-

ment since only one threshold level is checked. The four possible

widths, as presently selected manually with LAEW, can be determined

automatically by implementing four different threshold levels. Before

implementing this more complex system, more experience with the system

is required to determine its feasibility. The implemented dynamic sys-

tem has proven to be effective in obtaining a more stable outline under

low-contrast conditions.
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CHAPTER 11: EVALUATION OF THE CONTOUR DETECTION AND DATA

ACQUISITION SYSTEM

A quantitative evaluation of the success of the border algorithm

has been carried out. For this purpose, eight aluminum ellipses are

used, as well as four post-mortem dog casts and two series of canine

left ventricular angiograms. The ellipses range in size from 17.73 to

71.36 cm2, with major-to-minor axis ratios of 2:1. These sizes corre-

spond to the projections of eight prolate ellipsoids with circular cross

sections, ranging in volume from 40 to 320 cm3 in steps of 40 cm3.

Because the output from both the contour detector and the conven-

tional manual method are the absolute coordinates of the detected struc-

tures, the areas and the distances from the border points to the chord,

connecting the left-hand side of the aortic valve and the apex, are cal-

culated and compared for both methods.

Image Analysis System

Figure 82 is a block diagram of the image analysis system as

implemented in the Cardiovascular Research Laboratory at Ames Research

Center (ref. 59).

The left ventricular outline is manually traced using an Adage

Graphpen System. The cineangiograms of a left ventricular study to be

processed are mounted on a film editor and a selected frame is projected

onto the transparent graphic tablet. The pen position may be sampled in

a single point or in a continuous (40 points/sec) mode, so that discrete

points can be selected or smooth curves drawn. The resolution of the

sonar stylus position is 0.25 mm over the entire 35- by 35-cm tablet
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GRAPHICS
TERMINAL

GRAPHPEN
SYSTEM

X,Y

DISK

VIDEO

Figure 82.- Image analysis system. Left ventricular outlines can be
stored in computer memory in two input modes: (1) manually using
graph pen on either projected cine frame or displayed video image and
(2) real time using the border recognizer.

area. The'coordinates obtained are stored in the minicomputer and dis-

1 played-simultaneously on the screen of the Adage 100B Graphics Terminal.

By use 'of the Ampex DR10 video disc in the stop-action mode, a

selected video frame can also be analyzed manually by mixing the x-y

• cathode ray tube signal from the graphics terminal into the video signal

• by way of the Hughes 639 scan converter.

For the contour detector, the coordinates of the detected border

points are stored in computer memory through the computer interface (as

described in chapter 4). It was explained in chapter 4 that consecutive
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memory locations contain alternately the x coordinates of the left and

right borders, respectively, while the y coordinates of the starting

point and outpulse are the last transferred coordinates per video field.

The beginning and end points of the aortic valve are distinguished from

the rest of the x and y coordinates by means of an extra flag bit.

The x and y coordinates of the two discrete points are stored in the

first four memory locations of a particular field file.

The data sequence from the manual editor is somewhat different.

For a selected angioframe, the x and y coordinates of the two discrete

points are stored first. After this, the outline is traced from the end

point of the aortic valve, along the right border to the apex, and back

to the beginning point of the valve along the left border. For each

sample point, the x and y coordinates are stored; the number of sample

points per outline depends on the speed with which the outline is being

traced. Finally, the x and y coordinates of the beginning and end

i
points of the aortic valve plane are stored as discrete points. The

aortic valve plane is only"defined by these two points.

Because of the different data formats for both systems, a reformat-

ting program was written for the contour detector, which translates the

stored data into the same format as obtained from the manual editor

(ref. 60). This reformatting is initiated from the teletype by the
rj • • -•

operator after all the required data are stored in the computer. The

program checks at the same time to see if the number of x coordinates

per video field equals twice the difference in the y coordinates of

the starting point and outpulse plus two; an "illegal frame" has been

stored if this condition is not satisfied. Now that the video detected
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outline is in the same format as defined for the manual editor, all

existing programs for subsequent data processing of the ventricular mar-

gin can be applied and a comparison between the automated and manual

method is possible.

To compare the two methods, it is important to recognize potential

sources for errors.

Possible Error Sources

The errors that might occur in the automatic and manual border

recognition methods are categorized as follows:

(1) Parallax

(2) Border-tracking jitter

(3) Border definition criteria

(4) Inaccuracies in the obtained border coordinates as a result of

the limited resolution

(5) Linear and nonlinear magnification in the x-ray and optical system.

Parallax- Generally, parallax can be described as an apparent

change in the direction of an object by a change in observational posi-

tion, which provides a new line of sight. This error is applicable for

the manual editor, where the image is projected from underneath onto a

transparent plate. The border coordinates are computed by pointing the

sonar stylus at the left ventricular margin from the viewing side. It

is clear that parallax errors occur if the tablet is viewed from differ-

ent angles. A correct border coordinate is obtained if the eyes of the

observer are in a plane perpendicular to the tablet with the selected

point lying in this plane and the distances from the eyes to the

point being equal. This error is not applicable for the contour
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detector because the detected border points and the starting point (for

computing the discrete points) are mixed into the video signal and

displayed at the same physical level as the left ventricular image.

The percentage of error caused by parallax can be estimated by

pointing repeatedly at a discrete point from different viewing angles

and comparing the resulting coordinates. In practice, this error will

be very small if one is aware of this problem and therefore views the

outline from the correct angles.

Border-tracking jitter- Assuming we have a well-defined margin,

multiple manually tracings of the same margin will result in slightly

different results. The human hand is not steady enough to exactly trace

the same outline each time. In the video system, border jitter occurs

because of the limited signal/noise ratio.
)

The magnitude of this error can be estimated by tracing a well-

defined margin repeatedly. For the manual method, one should then view

the border each time from the same angle. The differences in the

obtained border coordinates are then a measure for the border-tracking

jitter.

Border definition criteria- In actual angiograms, contrast is often

fairly low, making it difficult to define exactly where the border is.

An investigator may want to draw the outline slightly different from

where the automatic method detects the border. This error will be even

more important if different investigators trace the same angiogram.

This error is, of. course, small if we have well-defined borders as for

the x-ray films of the aluminum ellipses. However, for actual angiograms,

this type of error will be the largest of the five possible errors.
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Inaccuracies in border coordinates as a result of limited

resolution- Inaccuracies occur because of the limited number of bits

available to determine a border coordinate. The Graphpen System deter-

mines each position in 12 bits, resulting in an accuracy of 1 in 4096.

For the video system, the x and y coordinates are each determined in

an 8-bit format, giving an accuracy of 1 in 256. To calculate the size

and shape of the left ventricular cavity, this accuracy is sufficient

because the resulting error will be small compared with other possibly

occurring errors.

Linear and nonlinear magnification in x-ray and optical systems-

To correct for linear and nonlinear (from nonparallel x-ray beams and

distortion due to recording or projection systems) magnification, a

magnification factor must be determined. Generally this magnification

factor will be position dependent. The techniques used to handle these

problems will be described later in this chapter. The detected outline

can then be reconstructed spatially - as it occurs inside the chest -

using an appropriate computer program. This method will effectively

compensate for the errors due to nonlinearities in the recording and

projection systems.

From this short discussion on the possibly occurring errors, it is

c-lear that repeatedly tracing a well-known, well-defined outline, as

for the x-rayed aluminum ellipses, will provide an estimate of the over-

all error that results from categories 1, 2, 4, and 5. Because these

four possibly occurring errors are expected to be small and of about the

same magnitude, no attempt has been made to separate them. In the day-

to-day routine with actual left ventricular angiograms, the error due
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to the border definition criteria will be the largest of the five

possible errors.

X-ray Coordinate System

The single-plane fluoroscopic system in the Cardiovascular Research

Laboratory at Ames is illustrated in figure 83. It consists of a vari-

able 15/22.5-cm image intensifier with both 35 mm film and video

recording.

Figure 83.- Single-plane fluoroscopic system in the Cardiovascular
Research Laboratory. The x-rayed structure undergoes linear and
nonlinear magnifications before it is projected on a viewing screen.

To accurately measure the changes in left ventricular size and

shape over a heart cycle, an external x-y-z coordinate system must be
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used. This coordinate system is defined by the positions of lead beads

on a calibration plate attached to the face of the image intensifier

(fig. 83). Actually, only two lead beads are required, one on the x

axis and the other on the y axis; both points are placed 6.35 cm from

the origin of the plate. These two positions are used to calculate the

position of the origin and to indicate the angular position of the

object with respect to this coordinate system.

The reasons for not simply providing a lead bead at the origin are:

(1) the resulting dot in the projected image has such a high brightness

level that it may interfere with the border algorithm and (2) it may not

be possible to distinguish the projected lead bead in the contrast-

filled left ventricular cavity. By placing the two lead beads suffici-

ently far from the origin, the abovementioned situations will not occur,

if one assures that the contrast-filled structure is about in the center

of the image. Originally, lead-filled crosshairs were provided on the

calibration plate, as shown in figure 83. With the manual editing sys-

tem the origin was simply defined by pointing at the center of the cross-

hairs with the sonar stylus. However, the high brightness projections

of the crosshairs interfered with the automatic border algorithm, giving

reason to remove them from the calibration plate.

The projections of the two earlier defined .-lead*beads are the

discrete points whose coordinates must be stored in computer memory

(chapter 4). Assuming that the calibrated (projected back to face Of

image intensifier) values of the x and y coordinates of the two lead

beads are determined as (xl, yl) and (x2, y2), respectively, the origin

of the external coordinate system is computed as
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xO

_

yo -xl

(249)

(250)

as shown in figure 84. Note that the calibrated values of the x and y

coordinates should be used in this calculation because the video-defined

x and y coordinates do not have exactly the same dimensions. The order

in which the two discrete points are stored in memory should always be

the same.

(0,0)

(x2,y2)

(xO.yO)

frxl + x2 yl +y2\
V 2 ' 2 /

Figure 84.- The origin of the external coordinate system can be
., calculated.from the two lead bead positions (xl, yl) and (x2, y2),

respectively.

Image' Transformations '

A projected angiogram, displayed on a video monitor or on the

.transparent tablet of the manual editor, has been subjected to linear

and nonlinear magnifications. First, the x-rayed structure is linearly

magnified by the diverging x-rays before it is recorded on the image
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intensifier. This magnification factor is defined as the ratio of the

distances from the x-ray tube to the image intensifier and from the

x-ray tube to the object. Second, linear and nonlinear magnifications

occur from the image intensifier to the projection screen, caused by the

curvature of the image intensifier face, lenses of recording and projec-

tion systems, and nonlinearities in the scanning systems for video

recordings. To accurately correct the obtained left ventricular out-

lines back to actual or real dimensions, it is important to account for

these linear and nonlinear magnification factors. Although modern

recording and projection systems are nearly linear, it is still impor-

tant to consider the slight nonlinearity for an accurate determination

of the spatial or actual coordinates of the object being measured. This

is particularly true for volume calculations where readjusted or

corrected values are cubed.

The image intensifier

must be aligned to reduce non-

linearity and skew by attach-

ing the fixture shown in

figure 85 to the face of the

image intensifier instead of

the calibration plate before

a left ventricular study is

performed. The crosshairs on

the two plates will line up

on the video monitor only

when the focal axis of the

IMAGE
INTENSIFIER

VIDEOMONITOR

FIXTURE

X-RAY SOURCE

Figure^85.- The image intensifier is
aligned with respect to the geo-
metric center of the x-ray beam by
an alignment fixture.
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image intensifier coincides with the central beam of the x-ray source.

The origin of the calibration plate is coincident with that of the fix-

ture. It is important that the fixture and the calibration plate be

nonmagnetic to prevent distortion caused by interference with the

electromagnetic field of the image intensifier.

An overall magnification function from the face of the image inten-

sifier to the projection screen can be obtained by attaching a different

calibration plate to the face of the image intensifier. This calibra-

tion plate is provided with lead beads placed on concentric circles with

respect to the focal center of the image intensifier. An x-ray film is

taken of this configuration and placed on the manual editor so that the

position of the center of the calibration plate coincides as accurately

as possible with the center of the projection screen. Because the dis-

tances from the lead beads to the center of the calibration plate are

known in cm, the magnification factor of each lead bead can be

determined, expressed in coordinates/cm. For the manual editor, it was

shown (ref. 13) that the overall magnification factor M can be moduled

to consist of two terms: a constant MQ and a term MI • R, which is

directly proportional to the

g M0

o

M = M0 + M,-R

(DISTANCE TO ORIGIN)

Figure 86.- The overall magnification
factor M from the image intensi-
fier to the projection screen is a
linear function of the distance
from a point to the origin of the
calibration plate.

distance from a point to the

origin of the x-y axis

(fig. 86). The magnification

factor is constant for the posi-

tions on a concentric circle.

For the video system, we

must distinguish two
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magnification factors, one for the x coordinates and one for the y

coordinates, because the x and y coordinates are not expressed in the

same units. The x coordinate of a point is determined by counting the

number of 5-MHz clock pulses from the horizontal synchronization pulse

to this border point, and the y coordinate is the video line number.

This will clearly result in different magnification factors.
r-

The same film of the calibration plate with lead beads on concen-

tric circles is used for the video system. This film is positioned on

the light table so that the projected origin of'the calibration plate

coincides with the center of the horizontal and vertical video scans and

the x-and y axes of the plate coincide with and are perpendicular to

the scan lines, respectively. With the contour detector in the DISCRETE

POINTS mode, the starting point is positioned at each projected lead

bead and enabling the computer interface over a one-field period results

in the storage of the x and y coordinates of a selected point in the

computer. This procedure is followed five times to average out possible

pointing errors. To calculate the magnification function for the x

coordinates, only the computed magnification factors for the points on

the x axis (y = 0) are used. The regression equation for the obtained

factors is defined as the magnification function. The regression equa-

tion is now assumed to be valid for each x coordinate, independent of

the y value. This can be justified by projecting the lead beads on

the concentric circles back to the face of the image intensifier using

the obtained regression equations. The x coordinates of the calcu-

lated and actual lead bead positions agreed within 1 mm for all cases,

which is sufficiently accurate. In exactly the same way, the regression
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equations are determined for the y magnification function using only

the lead bead positions on the y axis. Again, these equations are

assumed to be independent of the x coordinate, which was checked by

comparing the positions of the projected points and the actual lead

beads. The positions again agreed within 1 mm. This procedure is

equally applicable if the stored data on the video disc are used.

For the actual evaluation, the areas of the ellipses, casts, and

left ventricular angiograms are computed for both systems as well as the

distances from the borders to the defined chord. The necessary program-

ming steps are described briefly (refs. 60 and 61). •>

After the detected outline has been stored in computer core memory

and thereafter on the disk, the data are reformatted into the required

format with program FORMS. The next step is then to project the outline

back to the face of the image intensifier and to define the outline with

respect to a new coordinate system, formed by the x and y axes of the

calibration plate. This projection is done with a program called CVRT,

and is achieved by applying the appropriate magnification factor for

each point along the outline. The area, longest chord, and volume

(according to the area/length method) are then computed with program

VOL1. This program asks for the linear magnification factor from the

object to the image intensifier face so that the final results will be

in actual or real dimensions.

For the comparison between the video and manual system, the outline

is rotated so that the chord from the left-hand side of the aortic valve

plane to the apex is vertical; for this, a program CONMAN is .executed.

This separates the outline into a left and a right side. The chord is
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now divided into 100 equidistances and, for both sides of the outline,

the distances from the outline to the chord are calculated. This is

done in exactly the same way for the manually traced outline, and the

mean and standard deviations of the differences in the distances are

calculated for each side, resulting in a measure of the accuracy with

I

which the two outlines agree; this final step is done with the program

called HANSAL. The mean and standard deviations are given in millimeters.

Also, the difference in area involved is calculated for each side in cm^

and in a percentage of the average value of the complete left ventricu-

lar areas, determined by both the video and manual methods.
1
It is clear that this kind of comparison depends very much on the

positions of the left-hand side of the aortic valve and the apex. At

the time that the cineangiograms were processed with the video system,

the starting point and simulated aortic valve plane were positioned very

precisely, so as to coincide as accurately as possible with the manually

defined positions. An obvious solution would be to use the external

coordinate system to overlay the outlines. This works perfectly if we

compare outlines from the same system, but additional shifts and rota-

tions in the positions of the outlines occurred when corresponding out-

lines from the two systems were mathematically overlayed. Apparently,
i

this is a result of differences in the calculated origin due to pointing

errors and slight differences in the magnification factors. More work

must be done to determine exactly the error sources in this case and to

solve this problem. Because of these additional shifts and rotations,

this method was not applied for comparing the outlines, but the distances

to the defined chords were compared instead.
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Finally, the results of the evaluation are described in the last

part of this chapter.

Evaluation Data

Ellipses- The x-ray images of the eight aluminum ellipses were

processed by both the manual and video systems and the calculated areas

were compared with the true areas. The results are given in table 1.

Figure 87 is a photograph of one of the x-rayed ellipses as viewed on a

TV monitor.

Figure 87.- X-ray picture of aluminum ellipse.

For the manual method, the areas are determined within an accuracy

of 1.18 percent for the first six ellipses and 2.27 percent for the two

largest ellipses. For the video method, the accuracy of all but the

largest ellipse is better than 0.64 percent. Only the largest ellipse
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y = a + bx
a = -1 318cm2

b = 1034
r = 0999

20 30 40 50 60

TRUE AREA ELLIPSES (cm2!

Figure 88.- Comparison of calculated
areas from manual outlining with
true areas for the aluminum
ellipses. The dashed line is the
line of identity and the solid line
is the regression line.
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Figure 89.- Comparison of calculated
areas from video processing with
true areas for the aluminum
ellipses. The dashed line is the
line of identity and the solid line
is the regression line.

is off by 1.35 percent. Note

that the areas of the largest

ellipses are much greater than

the areas encountered for normal

left ventricular cavities, or

those with mild disease states.

The regression analysis of

the computed areas from the

manual and video methods with

the true areas are given in fig-

ures 88 and 89, respectively.

The correlation coefficients for

both methods is r = 0.999.

To determine the reproduci-

bility with which an area can be

determined, the smallest, middle,

and largest ellipses were each

processed five times. The cal-

culated standard deviation was

then used as a measure for this

reproducibility. The results

are given in table 2. These

results show that the reproduci-

bility for the video system is

an order of magnitude better

than for the manual method.
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On the average, the inaccuracy in the determination of the area of

a normal-sized angiogram due to errors of categories 1, 4, and 5 will be

less than 1 percent for manual processing and less than 0.64 percent for

video processing. Repeatedly processing the same outline results in a

standard deviation of less than 1.49 and 0.16 percent for manual and

video processing, respectively.
i

Casts- Four post-mortem canine left ventricular casts were posi-

tioned in a specially constructed fixture under the image intensifier so

that the orientation would be the same as during life in a dog. The

casts were x-rayed and the resulting images processed by both methods.

The outline of each cast was determined five times so that the reproduci-

bility could be assessed at the same time. The obtained outlines were

projected back into space using the appropriate magnification factors.

24

20

u
O

2 16
O
LUo
> 12
CM

U

«r 8

y = a + bx
a = -0 265 cm2

b = 1 021
r =0999

I I I
0 4 8 12 16 20 24

AREA (cm2) MANUAL OUTLINING

Figure 90.- Comparison of calculated
areas from video processing with
areas from manual outlining for
four post-mortem casts. The
dashed line is the line of
identity and the solid line is
the regression line.

The results are given in table 3.

The areas of the obtained

outlines agree within 1.20 per-

cent and the reproducibility for

the video system is, on the aver-

age, a factor of 7.5 times

better than for the manual sys-

tem. The regression analysis of

the computed areas from video

processing with the areas from

manual outlining is given in fig-

ure 90. The correlation coeffi-

cient is 0.999.

The results of the border

comparisons are given in table 4.
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For both sides of the outlines, the mean and standard deviations of the

differencesi in the distances from the border points to the corresponding

., chord, measured at equidistances along these chords, are given in milli-

meters. With the total area for each outline divided in this way into

99 slices, each with the same width, for both the left and right sides,

the differences in area between the two outlines are also given in cm2

and as a percentage of the average value of the total areas of the two

outlines. For both the distance and area comparisons, a negative sign

, means that the video-detected outline is "inside" thermanually traced

outline. With each cast being processed five times for the manual and

video methods, only the first outline of each series of five was used

for the above described comparisons.

These data need to be interpreted with caution. For cast 2, for

example, relatively large deviations result with comparable magnitude

and of different signs. This is really the result of slightly different

positions for the aortic and/or apex points for both outlines. The apex

point is determined with a software routine as the point farthest

removed from the left-hand side of the aortic valve plane. Consider the

case when the defined aortic valve points coincide but the positions of

the apex points are slightly different. For the comparison routine,

this is as if one outline had been rotated about the aortic valve point,

resulting in positive and negative deviations. If this rotation is not

negligible, then the magnitude of these deviations will be comparable

because the deviations due to border inaccuracies are generally

relatively small.
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There are several reasons for the inaccuracy in the determination

of the apex point. First, the sampling rate of the stylus position for

the manual method is low (40 samples/sec), usually resulting in a number

of coordinates per outline between 50 and 70. The number of coordinates

per outline from the video system was greater than 140 for the casts,

depending on the size of the x-ray shadow. Second, the distance between

the left and right border at the apex for the video system was rela-

tively wide. The casts were positioned in a fixture between metal pins,

two at the aortic valve plane and one at the apex. These pins appeared

in the x-rayed images as structures with a higher brightness level than

the casts, so that the distance between the borders at the apex could

not be made as small as is usually possible.

The above described inaccuracies make clear that the optimum solu-

tion will be to overlay the two outlines mathematically. It was

explained earlier in this chapter that shift and rotational problems

must be solved before this improved method can be applied.

If we omit the results of cast 2 from these evaluations, because it

is obvious that the relatively large deviations result from a rotational

problem, then we can say that the mean and standard deviations of the

borders for both sides are within 1.60 and 1.70 mm, respectively. The

area deviation per side is then better than 4.90 percent in the remaining

cases. The calculated deviations are expressed in millimeters and cm2,

respectively, because the outlines were corrected back to actual dimen-

sions. Note that the contrast of the x-rayed casts was generally rela-

tively low, clearly resulting in differences between the two methods.
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Figure 91(a) shows a hard copy of the five 'outlines of cast 3,

mathematically overlayed, as determined by the manual system. The five

video-detected outlines of the same casts are shown in figure 91(b).

These figures clearly show the much better reproducibility of the video

system.

(a) Manual system. (b) Video system.

Figure 91.- With an external coordinate system the obtained outlines can
be mathematically overlayed. This figure shows the results when
cast 3 is processed five times for the manual and video systems.

Left ventricular angiogrcms- Two series of left ventricular angio-

grams were processed by both methods. Every other cine frame from

diastole to systole was used for this purpose. The obtained outlines

were corrected for linear and nonlinear magnifications. The calculated

areas for the first series of angiograms are given in table 5. For most
<

outlines, the video system determines the area about 2 to 4 percent

smaller than for the manually traced contours. The regression analysis

of the computed areas from video processing with the areas from manual

outlining is given in figure 92. The correlation coefficient is 0.996.

The volume vs. time curves are shown in figure 93; the solid function

represents the calculated areas from video processing and the dashed
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TABLE 5.- CALCULATED AREAS FROM MANUAL AND VIDEO PROCESSING FOR

14 FRAMES OF THE FIRST SERIES OF LEFT VENTRICULAR ANGIOGRAMS

Frame

123
125
127
129

, 131
133
135
137
139
141
143
145
147
149

Manual outline
measured
area, cm2

20.29
20.91
21.32
21.52
23.00
23.86
22.98
21.33
18.71
16.90 .
14.42
13.28
13.96
13.34

Video processing
measured
area, cm2

19.71
20.15
20.47
21.05 -
22.31
23.39
22.27
20.43
18.32
16.02
14.27
13.65
12.98
12.77

Percentage
difference with
manual method

-2.86
-3.63
-3.99
,-2.18

" *~ -3.00
-1.97
-3.09
-4.22
-2.08
-5.21
-1.04
+2.79
-7.02
-4.27

28

24

O 20
DC

IU -1C
Q 16

>

1l2
o

LEFT VENTRICULAR ANGIO'S 123-149

y = a + bx
a = +0 087 cm2

b = 0965
r =0996

4 8 12 16 20 24
AREA (cm2) MANUAL OUTLINING

28

Figure 92.- Comparison of calculated areas from video processing with
areas from manual outlining for 14 frames of the first series of left
ventricular angiograms. The dashed line is the line of identity and
the solid line is the regression line.
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Figure 93.- Area vs. time plots of the calculated areas for the first
series of left ventricular angiograms. The solid line indicates the
calculated areas from video processing and the dashed line from
manual,outlining.

function, from manual outlining. Except for the differences in magnitude,

the video curve is smoother than the manual curve.

For each method separately, the detected contours were mathemati-

cally overlayed using the external coordinate system and displayed on

the graphics terminal. Such a display of outlines, corresponding to

different sample points in the cardiac cycle, is called a contourgraph.

The contourgraph in figure 94(a) gives the results from the manual

editor and, in figure 94(b), from the video system. It is clear that

smooth curves result when the outline is traced manually.
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(a) Manual processing. (b) Video processing.

Figure 94.- The 14 left ventricular outlines, obtained at different
instances from diastole to systole, are mathematically overlayed
using an external coordinate system.

For four frames, the outlines were again determined five times; the

resulting mean area and standard deviations are given in table 6. The

standard deviation (expressed as a percentage of the mean area) is better

than 2.83 and 0.31 percent for the manual and video systems, respec-

tively. The reproducibility of the video system is on the average a

factor of 8.2 times better. The video-detected outlines of these four

frames are illustrated in figure 95.

The results of the border comparisons are given in table 7. The
•* i->t ••'

comparisons are done with the outlines corrected back to actual dimen-
i

sions. For most frames, the mean deviation per side is well within 1 mm

and the standard deviations are all within 1.60 mm. The differences in

area, given as a percentage of the mean of the entire areas determined

by both methods, for both sides is, for most frames, within 4 percent.
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Anglo 125

Anglo 133

Figure 95.- Video-detected outlines for four selected frames from
diastole to systole.
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Angio 141

Angio 149

Figure 95.- Concluded.
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The remarks about the inaccuracies in the determination of the

chord are, of course, also applicable here. The inaccuracies in the

apex position now mainly result from the limited number of sample points

and the differences in the definition of the apex for both systems. It

is clear that situations occur when the investigator will draw the apex

slightly different from the automatically detected apex.

For the second series of left ventricular angiograms, 13 outlines

were processed from diastole to systole. The results are given in

table 8. For 7 of the 13 frames, the correlation in areas between the

two systems is very good (within 2 percent), but for the remaining six

frames the video system determined the areas on the average 7.11 percent

too low. These frames have fairly low contrast, so that it was often

hard to tell exactly where the actual border was. Under these circum-

stances, the differences between the two methods will, of course,

increase.

TABLE 8.- CALCULATED AREAS FROM MANUAL AND VIDEO PROCESSING FOR THE
FIRST 13 FRAMES OF THE SECOND SERIES OF LEFT VENTRICULAR
ANGIOGRAMS

Frame

1
3
5
7
9
11
13
15
17
19
21
23
25

Manual outline
measured
area, cm2

32.80
34.30
33.96
34.21
32.48
28.54
26.33
23.24
21.57
19.90
18.97
18.07
17.50

Video processing
measured
area, cm2

32.70
34.05 •
34.44
34.30
31.82
28.75
25.18
23.24
20.25
17.95
16.85
16.62
16.95

Percentage
difference with
manual method

-0.30
-.73
+1.41
+0.26
-2.03
+0.74
-4.37
+0.00
-6.12
-9.80
-11.18
-8.02
-3.14
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The regression analysis of the computed areas from video processing

with the areas from manual outlining is given in figure 96. The correla-

tion coefficient is 0.997. Figure 97 shows the computed areas plotted

vs. time. The solid function represents the calculated areas from video

processing and the dashed function, from manual outlining. The results

of the border comparisons are given in table 9. For 10 of the 13 frames,

the mean deviation in the borders is within 1.68 mm for both sides and

the standard deviation is within 2.52 mm for all frames. The differ-

ences in area, expressed as a percentage of the mean of the entire areas

determined by both methods, is within 6.12 percent for both sides in 9 of

13 frames.

y = a + bx
a = -3 056 cm2

b = 1 091

8 12 16 20 24 28
AREA (cm2) MANUAL OUTLINING

Figure 96.- Comparison of calculated areas from video processing with
areas from manual outlining for 13 frames of the second series of
left ventricular angiograms. The dashed line is the line of identity
and the solid line is the regression line.
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34

32

30

28

26

24
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22

20

18

16

LEFT VENTRICULAR
ANGIO's 1-25

MANUAL

VIDEO

I I I I I I

9 11 13 15 17 19 21 23 25
FRAME NUMBER

Figure 97.- Area vs. time plots of the calculated areas for the second
series of left ventricular angiograms. The solid line indicates the
calculated areas from video processing and the dashed line from
manual processing.

The earlier remarks about the apex inaccuracies (made in the

sections on the casts and the first series of left ventricular angio-

grams) are again applicable. For this second series, the contrast at

the apex was often fairly low, resulting in relatively wide distances

between the left and right borders at the apex.
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CHAPTER 12: FUTURE IMPROVEMENTS

It has been shown that the proposed detection and data acquisition

system for the left ventricular outline can detect the outline accurately.

However, while working with the system, new ideas came up, which should

result in: (1) improved border-tracking capability, (2) less operator

interaction, and (3) improved on-line use. In this chapter, the follow-

ing new ideas are discussed:

(1) Edge enhancement

(2) Detecting the first right-border point

(3) Dynamic determination of the aortic valve plane

(A) Dynamic adjustment of the sampling distances to the border

(5) Microprocessor control

Edge Enhancement

In the present system, the border positions are detected using a

dynamic thresholding technique. As explained in chapter 9, under all

reasonable conditions there is a value for a (0 <. a < 1) such that

acceptable border points are detected along the left ventricular border

with the equilibrium reference level Vequ;Q satisfying

c + AY (251)

where bmin is the lowest dc level per field for the video lines

traversing the left ventricle, c is the incremental dc level for a

particular equilibrium situation, A is the one-sided sample window

width, and y^ is the ventricular slope. Assuming that Vc = bmin(l ~ «)

the equilibrium reference level is given by
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f
(252)

where y2 is the background slope (0 <. y2
 < Yi)- Ic is clear that the

reference level will be different from the calculated equilibrium level

Vequil at those places along the border where sudden changes in dc

level and/or slopes from the last equilibrium situation occur, because

the new equilibrium level will be reached only with a finite time

constant.

However, the left ventricular border is characterized not only by a

certain threshold level but also by a slope. This parameter has not

been used explicitly so far and it will certainly be worthwhile to study

the possibilities of using the slope as an additional factor in

determining the actual border positions.

Generally, measuring or extracting the slope in images is a problem

associated with scene analysis and image enhancement (refs. 62 and 63).

For this particular application in angiograms often with low contrast,

it will be necessary to use a principle that does not introduce signifi-

cant amounts of additional noise and is electronically relatively easy

to implement.

An edge or line in a particular direction can be emphasized yhile

all others are attenuated or suppressed by performing a suitable differ-

entiation or differencing operation in the orthogonal direction. If we

assumeJthat the longest chord of the left ventricle is approximately

vertical on the monitor screen, then at the average the direction along

the ventricular border will be perpendicular to the scan lines. This
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then suggests differentiating the video signal or taking the difference

of video lines which have been delayed over a short period TQ with

respect to each other.

Differentiating the video is not a practical solution because it

introduces a lot of noise. This can easily be seen in the frequency

domain by taking the Fourier-transform of the derivative of a general

function v(t) . Define 3~[v(t)] = V(s), then:

- 2iris v(s) (253)

that is the original function V(s) is multiplied by 2iris, which is a

linear function of the frequency s. Therefore, the high frequency

noise components are very much amplified.

Differencing however, is less noisy than differentiating and may be

a practical tool for this problem. Taking the difference of v(t) and

v(t - Tp) amounts to applying the convolution of v(t) with

[6(t) - 6 (t - TQ) ] , where 6(t) is the impulse function. In formula:

v(t) -v(t-TD) = v(t) * [6(t) -6(t-TD)] (254)

Taking the Fourier-transform yields:

- J[v(t) - v(t- TD)] = (1-cos 2irsTD + j sin 2irsTD) • V(s) (255)

The magnitude of the coefficient of V(s) is now

|l-cos 2irsTD + j sin 2irsTD| = /2(1 - cos 2irsTD) (256)

which is a cosine function with a maximum value of 2 and a minimum value

of 0. The frequency components with s = (2m+l)/2To (m=0, 1, 2,. . .)

are multiplied by a factor of two, while the frequency components with

s = m/Tj) (m = 0, 1, 2,. . .) cancel out. This shows the much better noise
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behavior of the difference operator as compared with differentiating.

Clearly, the actual border information is also less amplified using the

difference operator, but that poses no problem. Schematically, the

difference operation is shown in figure 98.

ENHANCED
IMAGE

Figure 98.- Subtracting the delayed video signal from the original
signal results in image enhancement.

Taking the linear border model defined in chapter 9 as an example,

the wave forms in figure 99 result when the input signal is delayed over

a period Tp and then subtracted from the original signal. For a

left ventricular slope of YI V/sec, the amplitude of the difference

ORIGINAL
SIGNAL
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Figure 99.- Resulting wave forms when applying the difference operator
to the linear border model.



signal is Tptgy^ It follows from figure 99 that the maximum of the

difference signal is reached at the knee point of the delayed video sig-

nal. This particular point is the position where one would want to

detect the border in the ideal case. The amplitude of the difference

signal is a measure for the slope of the ventricular border. The prob-

lem of detecting the ventricular border then amounts to determining the

point in time where the maximum of the difference signal is reached

(discussed later).

It will be advantageous in generating the difference video signal

to use the 1-MHz, low-pass filtered video, which is also applied to the

analog comparators. This signal contains all the relevant border infor-

mation and will produce a less noisy difference signal than would be the

case with the original 5-MHz signal. Applying the principle of fig-

ure 98 to actual angiograms results in the images shown in figure 100.

Figures 100(a) and (b) show the original and enhanced images of an angio-

gram near diastole and systole, respectively. The applied delay,

clearly visible at the outermost boundaries in the picture, is about

1 usec. The slope of the left ventricular image being positive for the

left border results in a positive difference signal (bright edge), while

the negative slope for the right border results in a negative difference

signal (dark edge).

There are several ways to determine the border point from the

difference signal in figure 99. In the description of these possible

methods, it will always be assumed that the detection will be allowed

only within the expectation window. Especially with the slightly more

noisy difference signal compared with the 1-MHz filtered video, it will

!
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(a) Original and enhanced angiogram near diastole.

Figure 100.- Applying the difference operator to actual angiograms
results in the enhanced images shown.
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(b) Original and enhanced angiogram near systole.

Figure 100.- Concluded.
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be important that the center of the expectation window approximates the

actual border point as accurately as possible, allowing a relatively

narrow expectation window. This again favors the first-order line

extrapolation principle above the zeroth-order principle. Some of the

possible detection methods are:

(1) Apply adjustable dc thresholding technique to the difference

signal. This results in the detection of a border point where the den-

sity gradient becomes greater than a preset gradient. However, the

gradient changes appreciably along the ventricular border so that a rela-

tively low preset value would have to be chosen. This may result in

erroneous border points due to noise and intervening structures. Also,

the position of the detected border point with respect to the knee in

the border model depends on the preset level.

(2) Apply a dynamic thresholding technique. It is clear that the

amplitude of the difference signal is a function of the difference of

the video samples V-̂ (n) and V^Cn + l) (as-defined in fig. 62, chapter 9).

The threshold level should therefore be adjusted on a line-to-line basis

according to the difference Vĵ (n) -V^Cn+l). Forced border points are

again generated at the beginning and end of the expectation window if

the difference signal is already above the threshold level at the begin-

ning of the expectation window and if the difference signal is below the

threshold level during the entire expectation window, respectively.

The above described two principles are usually referred to as

threshold gradient principles.

(3) Detect the trailing edge of the double difference signal.

Ideally, we would like to determine the position where the maximum of
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the difference signal is reached. There is no easy solution for this

directly in real time. Indirectly, this can be solved by applying the

difference principle again to the difference signal, resulting in the

generation of a double-difference signal V2 Djpp. This operation is

shown in figure 101 with the difference signal in figure 99.

I I

Figure 101.- Taking the difference of the difference signal in figure 99
and the delayed signal results in the wave form of V2 DIFF-
time derivative of V is also shown.

It follows from figure 101 that the beginning of the trailing edge

of the first trapezoid-shaped pulse indicates the position where the

difference signal reaches its maximum. However, the trailing edge can

be detected only by using a dynamic thresholding technique. This will
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• result'in a detected border point slightly to the'right of the actual

border-point, which is acceptable. The derivative of the difference

signal is also given in figure 101. Applying the'thresholding-technique

to dVDjpp/dt gives the actual border point, but taking the derivative

will introduce too much noise. • '

If this edge enhancement principle proves useful for the contour

detection, then both this principle and' the~presently used dynamic,

thresholding technique will be applied simultaneously. The^actual bor-

der position can then be defined as the average position of the posi-

tions determined by both principles separately..

The-result of the above described edge enhancement is that edges

that are'perpendicular to the scan lines are maximally enhanced and

' edges parallel to the scan lines are not enhanced. For an edge making

an angle of <(> degrees with the scan lines, the percentage of '

enhancement is given by |sin <|>| x 100 percent. - ,

Somewhat more complex electronic circuits have been reported, which

enhance details, contours, and structures regardless of whether they run

parallel, perpendicular, or at any angle <|> to the scan lines. One of

these schemes (ref. 64) produces an all-directional second derivative

signal (detail signal). Detail enhancement is effected by adding the

detail signal to the unchanged main signal. The detail signal, which

contains the edges and fine structures of the original picture, is pro-

duced by a sharp-unsharp subtraction. This signal for low sharpness is

generated in two steps. At first, the sharpness of the mainly horizon-

tal edges and structures (low angles of inclination <(>) is reduced by

means of two supersonic delay lines for the duration of one scan line
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(63.5 ysec) . In the second step, the sharpness of mainly vertical -edges

(angles of inclination (j> up to 90°) is lowered by means- of a low-pass

Thomson filter. Adjustable amounts of the detail signal and the main

signal are added together to form the output signal. The transfer

characteristics show that the transition between unchanged low spatial

frequencies and enhanced high frequencies is shifted toward higher

frequencies with decreasing angle of inclination <j>.

A scheme that enhances the edges perpendicular to the scan lines by

delaying the density signal and subtracting it from itself in a video

subtracter is given in reference 65. The density signal is defined as

D = log(l/T) = const- (l/y)log E, where T is the transmittance of the

film, y is the gamma for the vidicon tube, and E is the TV camera

output. To obtain the density, signal, the video signal must be logarith-

mically amplified with a log amplifier.

For the general case that an image is processed in both, ,x,and y

directions, twice differentiating in each direction results in the

so-called Laplacian operator V2 = (32/3x2) + (32/3y2) (ref. 66)., If it

is assumed that the original picture can be described by f(x,y) and the

resulting picture by F(x,y), the operation

F(x,y) = f(x,y)-k + - (257)

where k ' is a constant, is referred to as contour enhancement-. The

detail image, which results by applying the Laplacian operator multi-

plied by k2, is subtracted from the original image. This overall opera-

tion is an approximation of a standard photographic technique known as

unsharp masking.
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Detecting the First Right-Border Point

It was explained in chapter 8 that the generation of the simulated

aortic valve plane is halted and the first right-border point is

detected as soon as the video level reaches a preset reference level

within the defined expectation window. This preset reference level is

set by the operator. However, contrast near the outflow tract for the

right border is often fairly low (fig. 102), making it difficult to set

Figure 102.- Angiogram with fairly low contrast near outflow tract.

this level. If the preset level is adjusted slightly too high, then the

aortic valve generation is halted too early and, if it is slightly too

low, then it extends too far into the background area. Also, the video

level at this right-border point generally changes during a cardiac

cycle, requiring readjustments of this preset level.
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To make this adjustment less critical, it is proposed to use the

difference of the normally defined video samples as a measure to deter-

mine the first right-border point (fig. 103). In this figure, the sample

SIMULATED AORTIC
VALVE PLANE

SCAN DIRECTION

Figure 103.- First right-border point is detected when the difference
between the left- and right-hand sample levels on the same line
exceeds a preset level.

and expectation points are defined during the aortic valve plane genera

tion. To calculate the reference level for line (n+1), the sample

levels at RSPR1 and RSPR2 on line n and at RSPL on line (n+1) are

used. However, to detect the first right-border point, we will use the

difference of the sample levels on the same line. Assume that the cur-

rent line number is n, then we are interested in the magnitude of the

difference

where VL is the sample level at RSPL and VR1 and VR2, the sample levels

at RSPR1 and RSPR2, respectively, all determined on line n. So long as

the samples are taken in the contrast-filled outflow tract, the magni-

tude of VD is small. However, when g(nT) is generated in the

neighborhood of the actual border so that RSPR1 and RSPR2 are positioned
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in the background area, the difference will increase. The end point of

the aortic valve is then defined where Vj) crosses a preset level for

the first time per field; after this, the AV is set to zero to deter-

mine the expectation window for the next line. The first right-border

point is then detected in the usual way. This principle allows limited

changes in contrast during a cardiac cycle. If contrast is very low,

then this principle fails, but that is certainly true for the old

threshold,method. At one time, this principle was tested and proved to

be feasible and successful on a trial basis. However, it has not been

incorporated in the contour detector II. Further experiments are

necessary before this can be implemented.

Dynamic Determination of the Aortic Valve Plane

In the present system, the starting point is positioned by the

operator at the aortic valve by means of a joystick. However, during

a cardiac cycle, the aortic valve plane is not fixed, but moves (as

clearly shown in fig. 94 of chapter 11 where the detected borders are

overlayed using an external coordinate system). This makes it clearly

evident that the starting point must be repositioned automatically when

on-line use is contemplated.

It is also clear that automatic repositioning the starting point is

a very difficult problem. The reason for using the starting point has

always been to generate the simulated aortic valve plane, which cannot

be determined with a threshold technique. The position of the aortic

valve plane is necessary to calculate the area and volume of the left

ventricular cavity, but not necessarily to detect the left ventricular

outline. The contour detector can detect the outline plus the aortic
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valve by positioning the starting point in the aortic region above the

valve (as shown in fig. 104). Therefore, it is proposed to determine

the simulated aortic valve plane using a software routine. This can be

done in the minicomputer (PDP-12) or with a microprocessor built in the

contour detector (see section on microprocessor control in this chapter)

Figure 104.- Aortic valve and left ventricular cavity are detected when
the starting point is positioned above the aortic valve (human left
ventricle).

'

The procedure for calculating the area and volume of a left

ventricular cavity then requires the execution of one extra software

routine, compared with the present setup. Data will be handled as pre-

viously described. Outline coordinates are stored first in core memory

and thereafter on a digital disk, assuming a minicomputer is used for

this purpose. The aortic valve algorithm will be applied before the
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reformatting is done; the algorithm finds, of course, only the

beginning and end points of the simulated aortic valve plane. Once the

valve points have been determined, the border coordinates above the

valve plane can be deleted and the formatting routine can be applied.

Note that the number of left-border x coordinates is generally no

longer equal to the number of right-border x coordinates because the

right-border points on the simulated aortic valve plane have not been

generated. This can be solved by calculating new right-border points on

the valve line by linear interpolation; this format is necessary for the

reformatting program presently used. Otherwise, the reformatting pro-

gram must be changed. After the reformatting, the data file is again in

the required format to execute the remaining programming steps.

If a microprocessor is being used in the contour detector, the

aortic valve plane can probably be determined in the remaining time of a

field period.

An applicable software routine has been reported in the literature

(ref. 37) and was described in chapter 2. This algorithm uses the

following properties of the aortic valve:

(1) The valve line is one of the shortest lines that will connect

the right and left boundaries of the ventricle-aorta outline.

(2) The valve line is roughly perpendicular to the centerline of

the ventricle-aorta silhouette.

(3) There is usually a large right turn angle at one or both of the

valve line ends.

Another reported algorithm searches for the minimum distance

between any of the first 20 points of the left border and any of the
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first 20 points on the right side (ref. 41). A similar algorithm would

probably best suit our requirements without restricting to the first 20

points.

Because of the particular shape of the aortic valve, it is clear

that the designated valve plane can be determined by searching for a

local minimum in the distances between the two sides of the ventricular

outline. With the starting point always positioned above the aortic

valve, for each left-border point the minimum distance to the right

border can be calculated. A plot of these shortest distances as a func-

tion of the video line number is shown in figure 105. The position of

the designated aortic valve plane should then be easy to recognize. If

the starting point is always positioned approximately in the middle of

the aorta, then fairly large movements of the aorta can be allowed

without disturbing the contour detection.

MINIMUM
DISTANCE
BETWEEN

BOUNDARIES

VENTRICULAR
CAVITY

VIDEO
BEGINNING POINT LINE NUMBER

AORTIC VALVE PLANE

Figure 105.- The beginning point of the simulated aortic valve plane is
the left border point for which the function of minimum distances
between boundaries has a minimum, following the maximum of the aortic
valve.
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Dynamic Adjustment of the Sampling Distances
- - •.

In the theoretical analysis of the dynamic reference level, it was
•

assumed that the sample points are taken at a distance A from the bor-

der point and that the direction of the left ventricular outline is per-

pendicular to the scan lines, resulting in maximum density changes along

a video line. However, in actual angiograms, the direction of the left

ventricular outline changes appreciably over a frame and with that the

maximum density changes on a video line. Figure 106 shows a canine left

ventricular angiogram with the positions of the sample points LSPL1, RSPL,

and RSPR2 superimposed in the video signal. Although the sample window

widths are constant over this frame, the sample points at the mitral

valve, for example, are closer to the actual border because of the

direction of the outline.

Figure 106.-Positions of the sample points LSPL1, LSPR, RSPL, and RSPR2
superimposed in the left ventricular image.
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Figure 107(a) shows the linear border model proposed in chapter 9;

it is assumed for this model that the direction of the left ventricular

7i -sin 0 V/sec
VR(n)

BP(n)

(a) Assumed linear border model with sample window widths A under the
condition that the direction of the left ventricular outline is
perpendicular to the scan lines.

b ; ~

BP(n)

(b) The sample window widths must be adjusted to A/sin 9, when the
direction of the outline makes an angle of 6° with the scan
lines.

Figure 107.- Dynamic adjustment of the sample window widths.
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outline is perpendicular to the scan lines. Consider the case that the

direction of the outline makes an angle 9° with the scan lines. The

border model then changes so that the new slopes are YI sin 9 an^

Y2 sin 0, respectively, as shown in figure 107 (b). To sample the same

video levels, the sample window widths must be changed to A1 = A/sin 8,

a change in width of A/sin 6 -A = A [(I/sin 6)-l],
1 i- , • • i •- _• j - •

It follows from this discussion that the sample window widths
i

should be adjusted dynamically according to the direction of the outline

to always sample the correct video levels. A possible solution for

implementing this dynamic sample window width principle is described in

this section.

Figure 108 shows the situation that the straight line through

g(nT) and g[(n-l)T] makes an angle 9° with the scan lines. Assuming

g[(n-DT]

Figure 108.- Direction of the outline makes an angle of 9° with the scan
lines.

g(nT) is the last detected border point, the position of g[(n+l)T] can
'* ' - ! ..rrr.,̂

again be approximated using linear extrapolation. The difference in

horizontal position between g(nT) and g[(n-l)T] is therefore a measure

for angle 8 and should be used to adjust the sample window widths on

line (n+1). Mathematically, this can be written as

g(nT)-g[(n-1)T] = D cotg 8 (259)
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where D is the vertical distance between consecutive video lines in

the same field, expressed in 50-MHz clockpulses. The value for D can

be derived by assuming 6 = 45°; then

g(nT) -g[(n-l)T] = D (260)

Each field has 262-1/2 lines, including the vertical retrace lines; let

us estimate the actual number of lines during the nonblanking period to

be 250. The horizontal line period is 63.5 psec, including the horizon-

tal retrace time; the actual nonblanking line time is then approxi-

mately 57 psec. Because of the 4:3 aspect ratio, the effective line

period for calculating D is 3/4 x 57 ysec. The value of D, expressed

in 50-MHz clock pulses, follows by dividing the effective line period by

the number of video lines, that is,

D = 3/4 X yS6C = 171 nsec s 8.5 clock pulses (261)

Table 10 gives g(nT) - g[(n - 1)T] expressed in clock pulses as a func-

tion of 6 using formula (259) . Now that we have an equivalent value

for D, the measured difference g(nT) - g[(n - 1)T] allows the calcula-

tion of the corresponding angle 6 so that the new width A/sin 9 can

be determined.

To implement this procedure, it is proposed to use a look-up table

consisting of ROM's. The size of this ROM memory can be derived by con

sidering the maximum number of bits, used for A, A/sin 6, and

{g(nT) - g[(n - 1)T]}. The sample window width A is given in a 4-bit

binary format; allowable values for A are from 0 to 12 (chapter 8).

The dynamic window width is limited to a 5-bit format; otherwise, the

samples are taken too far from the actual border, possibly resulting in
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TABLE 10.- DIFFERENCES IN CONSECUTIVE BORDER POSITIONS' g(nT) AND
g[(n-l)T] (EXPRESSED IN 50-MHz CLOCK PULSES) AS A FUNCTION OF THE
ANGLE BETWEEN THE LINE CONNECTING g(nT) AND g[(n-l)T] AND THE
DIRECTION OF THE SCAN LINES

6, deg

90

80

70

60

50

45

40

30

20

10

cotg e

0.000

.176

.364

.577

.839

1.000

1.192

1.732

2.747

5.671

g(nT) - g[(n-l)T] =D • cotg 9

0.00

1.50

3.09

4.90

7.13

8.50

10.13

14.72

23.35

48.21

erroneous sample levels due to intervening structures. In practice, a

five-bit format for g(nT) - g[(n - 1)T] will be sufficient. The address

of the ROM memory will be formed by A and (g(nT) -g[(n-l)T]}, totaling

nine bits. Therefore, we need per border five ROM's each 512x1 bits;

the right- and left-hand window width for a border side can be accessed

sequentially. The ROM configuration is shown schematically in

figure 109.

g(nT)-g[(n-1)T]

STATIC
SAMPLE
WINDOW
WIDTH A

™™ ̂ "™~

^__M

^—

A0
A1

A2ROM

A4
A5
A6
A7
A8
A9OUT

V

ROM

A09

OUT

A
rv

ROM

A0-9

OUT

A
V

,

ROM

A0-9

OUT

^

ROM

A0-9

OUT

1 \ \ \ \

DYNAMIC SAMPLE WINDOW WIDTH A' = ^-^

Figure 109.- ROM configuration for the dynamic adjustment of the
sample window widths.
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Microprocessor Control

Clearly, the presently implemented system is already quite complex

and there certainly will be an increase in the complexity after all pro-

posed improvements have been implemented. With this kind of a complex-

ity, it will be necessary to design the total system as a real-time,

special purpose computer system, whereby the dynamic adjustments of the

different parameters are controlled as much as possible by a central

processor. This approach will result in an optimization of the perform-

ance of the system. The contour detector prototype II has been designed

so that the border points, expectation, and sample window widths are

determined in a binary format suitable for use with a microprocessor.

With the technology advances in the microprocessor area developing

rapidly, this seems to be the approach of choice for the next generation

contour detector. In the near future (within 6 months), a very fast

microprocessor (Motorola M10800) will be on the market ,v which may be

suitable for this real-time control task. The idea then will be to use

the microprocessor mainly as a controller to dynamically adjust the

different parameters. Some possible functions for the microprocessor in

the contour detector are:

(a) Dynamic expectation window width- It was explained in chapter 10

that ma'king the expectation window width narrow under low contrast con-

ditions was very successful. In the present system, only one threshold

level is used and the minimum width of the window must be set manually.

Converting the difference of the sample levels in a digital format will

allow the microprocessor to select the appropriate minimum expectation

window width using more threshold levels.
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(b) Selection of zeroth- or first-order line extrapolation

principle- In the present system, either the zeroth- or first-order line

extrapolation principle can be selected manually. The zeroth-order

principle is usually selected under low contrast conditions if the

longest chord is approximately perpendicular to the scan lines. In most

cases, areas with low contrast (e.g., where the diaphragm crosses the

heart border) and with higher contrast occur along the same outline.

This suggests that the appropriate principle should be enabled automati-

cally, depending on contrast and the direction of the outline; a measure

for the direction of the outline is, of course, g(nT) - g[(n - 1)T]. This

automatic selection can be controlled very well by a microprocessor.

(c) Dynamic adjustment sample window width- This was explained in

some detail earlier in the chapter.

(d) Dynamic determination of the aortic valve plane- This was also

explained earlier in the chapter.

(e) Calculation of area, longest chord, and volume- Presently, the

correction of the detected outline to actual values and the calculation

of area, longest chord, and volume are done in a minicomputer (PDP-12).

It is clear that this can also be done with a microprocessor, making the

total system a stand-alone system. The minicomputer can then be

assigned for other tasks. ^

(f) Improved reliability- If a microprocessor is used as the con-

troller for the contour detector, the total 1C count will be reduced,

resulting in a more reliable system and one that is easier to service.

Although the microprocessor will play an important role in the proposed

next generation contour detector, it will still constitute only a
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relatively small portion of the total system from the hardware point of

view. The ECL circuitry, for example, for determining the positions of

the expectation and sample points along a video line will still be

necessary, as well as the implemented arithmetic units, because of the

large number of arithmetic operations that must be done in a relatively

short time period. This will also allow the microprocessor to perform

other control functions in the meantime.

CONCLUSIONS

Results to date with the system have been extremely good. In most

cases, an accurate outline can be obtained, even in pictures with rela-

tively low contrast. Figure 110 shows the detected contour for a left

Figure 110.-Resulting contour for a left ventricular angiogram of a dog
when applying the described algorithm.
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ventricular angiogram of a dog when the described algorithm is applied.

The detector contour for a human left ventricle is shown in figure 111.

The obtained contours agree very well with the outline drawn by an

experienced investigator. An accurate outline is obtained in figure 111,

even at places of low contrast, as represented by the area where the

diaphragm crosses the left ventricular chamber.

Figure 111.- Resulting contour for a human left ventricle when apply-
ing the described algorithm. An accurate outline is obtained, even
at places of low contrast, as represented by the area where the
diaphragm crosses the left ventricular border.

The quantitative evaluation of the success of the border algorithm

showed the high accuracy of the system and the good agreement with manu-

ally drawn outlines. For this purpose, eight aluminum ellipses are used,

as well as four post-mortem dog casts and two series of canine left

ventricular angiograms. The areas and the distances from the border

points to the chord, connecting the left-hand side of the aortic valve
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plane and the apex, are being calculated and compared for the automatic

and manual border outlining. The video system determined the actual

areas of the ellipses within 0.64 percent for all but the largest

ellipse and the manual system within 1.18 percent for all but the two

largest ellipses. For the casts, the areas computed by both methods

agreed within 1.20 percent with maximum values for mean and standard

deviations in border differences of 1.60 and 1.70. mm, respectively, for

three of the four casts. For the first series of left ventricular angio-

grams, the areas agreed within 4.27 percent for 12 of the 14 processed

frames; in all cases the maximum values for mean and standard deviations

in border differences were 1.85 and 1.60 mm, respectively. Thirteen

frames were processed for the second series of left ventricular angio-

grams; the areas agreed within 6.12 percent for 10 frames with maximum

values for mean and standard deviations of 1.71 and 2.52 mm, respec-

tively. In the overall evaluation, reproducibility of the video system

was shown to be much greater than for manual tracings of the border.

A limited number of experiments has been done with the contour

detector working on-line using the stored data on the video disc. In

these cases, the system detected the outlines on-line. However, a more

extensive evaluation of the system in a clinical or investigative envi-

ronment on a day-to-day basis is necessary to determine which improve-

ments remain to be made. Some improvements already have been proposed

in chapter 12, which will result in: (1) improved border tracking

capability, (2) less operator interaction, and (3) improved on-line use.

Especially, the automatic determination of the aortic valve plane will

be important for on-line use of the system.
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It is clear that the threshold detection technique is also

applicable to other fields, for example, echocardiography. A cineframe

of a human heart study using a multielement array was scanned with the

contour detector and resulted in the contours shown in figure 112 (ref. 67).

The left border in figure 112 (a) indicates the left ventricular epicardial

surface at the posterior wall; the detected structure in figure 112(b) is

the anterior leaflet of the mitral valve. Only a small portion of the

total image could be selected for contour detection because of the par-

ticular implementation of the contour detector, but it clearly shows

that the structures can be recognized by use of threshold detection.

The application of the presently proposed data acquisition -system

for on-line, real-time detection of left ventricular outlines has many

advantages over presently used manual or semiautomatic procedures in a

clinical or investigative environment. Conventional methods require

time-consuming and tedious techniques of recording on film, manually

drawing the outline, and storing the information in computer memory.

The associated time delays can be days, if not weeks, and the reproduci-

bility often is poor, especially if the margins are drawn by different

investigators.

Projected use of the system during a catheterization will require

the storage of the obtained video angiograms on a video disc; cineangio-

grams may be used as a secondary storage medium. Use of the disc will

allow for selection of the initial frame to be studied and for the ini-

tial setting of the system parameters, such as the positioning of the

starting point, the expectation and sample window widths, and the

adjustment of the a factors for the reference levels. After this,
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(a) Left border indicates the epicardial surface of the posterior wall
of the left ventricle.

• •

(b) Detected contour of the anterior leaflet of the mitral valve.

Figure 112.- The threshold detection technique applied to
Echocardiography.
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the disc can be run at 60 fields/sec and the system will automatically

detect the contour. By limiting the display on the viewing monitor to

the detected outline of the left ventricular chamber, the investigator

can concentrate on its dynamic changes. A hard copy of a contourgraph

and the calculated areas, longest chords, and volumes will be available

within a few minutes as computer output functions. At the same time,

these data can be correlated with simultaneously occurring pressure and

flow events. If necessary, individual angiographic frames or the whole

cycle can be replayed. With all the information now available, the

investigator can verify the validity of the study and provide a diagno-

sis before the patient has left the table. This will obviously result

in better patient care and decreased cost, which justifies the use of

this system on a regular basis during catheterization studies.

When using a biplane x-ray system whereby both projections are

displayed side by side on the video monitor, the most practical and

economical solution will be to process the two projections sequentially.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif. 94035, November 17, 1975 '
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APPENDIX A: VIDEO RECTANGLE GENERATOR
'

The video rectangle generator is an electronic circuit that gener-

ates the video signal for a rectangle. The polarity of the rectangle

can be selected so that it is displayed on the viewing monitor as a

bright structure against a dark background or as a dark structure against

a bright background. The rectangle can be positioned arbitrarily on the

TV monitor screen. The height and width can be adjusted independently,

but they are always vertical and horizontal. Figure 113 shows the

rectangle as a bright structure against a dark background.

Figure 113.- The video rectangle as viewed on a TV monitor.

This ideal model can be seen as a very rough approximation for a

ventricle. When using negative cineangiograms, the left ventricle is

shown as a bright chamber against a dark background. A video angiogram
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from video disc or tape, on the contrary, displays the left ventricle on

the viewing monitor as a dark cavity with a brighter background. Thus

both situations can be simulated with this video rectangle generator.

Such a simple repetitive signal has proven to be very helpful during

the design of the contour detector and the computer interface. It is

clear that the contour detector finds a very stable contour around this

rectangle. This is very advantageous for the initial adjustments of the

different parameters in the contour detector. Stable oscilloscope dis-

plays result because of the ease of triggering a repetitive signal.

Actual time delays, for example, can be measured very accurately and the

design of the system can be optimized according to the obtained informa-

tion. Figure 114 is an example of a detected contour. The first part

Figure 114.- Detected contour for the video rectangle.
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of the right border from the starting point to the right side of the

rectangle is again the aortic valve plane. The slopes of the other non-

vertical parts of the contour are determined by the corresponding expec-

tation window widths. An outpulse is again generated in the normal way

as described in chapter 7. It is also possible to terminate the detec-

tion at the last line of the rectangle by applying an outpulse,generated

by the video rectangle generator at the end of that line (fig. 115).

Figure 115.- Contour detection is halted at the bottom of the
rectangle by applying an internally generated outpulse.

The actual implementation of the circuiting is shown in figure 116.

Required input signals are the vertical, horizontal, and composite

synchronization pulses from a sync generator.
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APPENDIX B: PRECISION LIMITER

Basically, the precision limiter implemented in the analog

preprocessing circuitry is as shown in figure 117. In this circuit, the

Figure 117.- Basic circuit of the precision limiter.

high open-loop gain of the operational amplifier is used to reduce the

effect of the diode nonlinearity and the temperature sensitivity. Using

the usual op. amp. relationships and the formula for the diode voltage

as a function of the current through the diode,

nkT - In f(if) (262)

the circuit can be analyzed.

For 63>0 (ei <0), the current 13 will be zero because e2 = 0
J t.

and D2 is back-biased. Essentially all input current i] flows through

RF, generating an output voltage

RF
e0 = - 0 (263)
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If the finite amplifier gain and diode nonlinearity are considered, the

expression becomes

/ RF\
I __ I G "

e° = ' (264)
eo

where 6 = Rj/CRj+Rp). The effect of the diode forward voltage

is reduced by the loop gain A3 of the closed-loop circuit. The

"rounding" of the turn-on region therefore virtually disappears.

For 63 <0, diode Dl no longer conducts and all the input current

±1 flows through D2. Theoretically, the output voltage is then exactly

equal to zero. The expression for eg, considering finite gain and the

diode nonlinearity, is

an extremely small voltage. Thus, the precision limiter provides a good

approximation of ideal diode behavior, reducing the diode nonlinearity,

temperature sensitivity, and forward voltage drop by a factor equal to

the loop gain of the amplifier. The transfer curve for the precision

limiter is given in figure 118. In the actual implementation, hot

carrier diodes were used, necessary in switching the high-frequency

video signal.
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,SLOPE = 0

Figure 118.- Transfer curve of precision limiter.
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APPENDIX C: LOW-PASS FILTER

The transfer function of the applied low-pass filter in the analog

preprocessing circuitry is a three-pole Bessel function with a cutoff

frequency at 1 MHz. The considerations for choosing this type of filter

are given here.

Ideally, the magnitude of the transfer function is constant within

the desired frequency range u>c (called the passband) and zero over the

rest of the frequency range (referred to as the stopband). Such an

ideal magnitude response for a low-pass filter is shown in figure 119.

|T(jco)|

PASSBAND STOPBAND

CJ = CL).

Figure 119.- Ideal low-pass filter transmission.

Clearly, such a transfer function is not physically realizable; the best

one can do is to approximate the ideal transfer function as accurately

as possible. Except for this steady-state frequency response, the

transient response to a step input may also be of interest. Real video

signals are more nearly characterized as a sequence of pulses or a

series of step changes in signal amplitude and,as a result, a certain

pulse or step response in the time domain will be a more important
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requirement in this application than a flat transfer .function in the

frequency domain. In practice, the transient response of a linear cir-

cuit is usually specified in terms of the rise time. TR, the delay time

TQ, and the overshoot y-. These parameters are defined as follows:

(1) Rise time T_ is defined as the time for a transient response

to rise from 10 to 90 percent of its final (steady-state) value for a* a '

step input. " ,

, , (2) Delay (time _ ,TD is,defined, as the time required for a transient

response to reach 50 percent of its final value for a step input.

(3) Overshoot y is the.difference between the peak value and

final value of the step response expressed as a percentage of the final

value.

Generally, it is true that the higher the overshoot the better the

rise time. For pulse and video applications, usually an overshoot of

higher than 5 percent is not desirable since it causes distortion of the

transient signal. It,is shown in reference 68 for linear circuits how

the steady-state magnitude and/or phase distortion leads to a transient

distortion, and that the approximation of linear phase leads to a better

replica of the input signal than the approximation of maximally flat

magnitude. For as little overshoot as possible, it is necessary to have

a maximally flat delay (MFD) function rather than a maximally flat magni-

tude (MFM) function. The maximally flat delay response corresponds to a

linear phase response; the rise time for this response will be somewhat

poorer than for a MFM response.

For pulse and video applications, where the transient response must

have low overshoot (approximately linear phase), there is- an approximate
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relationship between the rise time and the bandwidth (ref. 69). This

empirical relationship is of the form

B • TR = 0.35 to 0.45 (266)

where B is the bandwidth from zero to the upper 3-dB cutoff frequency

fc. If the rise time for a particular application is known, then the

required bandwidth can be determined using the above empirical

relationship.

A calibration bar was placed under the x-ray image intensifier and

x-rayed to determine the minimum rise time of the x-ray system. The

resulting video signal was displayed on a Tektronix Waveform Monitor and

a minimum rise time of 222 nsec was measured,which gives a required

upper 3-dB frequency of

f3dB ~ °'33-Q - 1-574 MHz3 222 x10 9

This measured rise time will always be much shorter than the rise

times that occur in actual left ventricular angiograms. After having

studied several angiograms, it was found that a typical left ventricular

border has a rise time of approximately 640 nsec. This results in an

upper 3-dB frequency of 546 kHz.

Because of the abovementioned requirements, a third-order Bessel

filter was chosen with a cutoff frequency at 1 MHz. This filter has a

linear phase response and the magnitude of the transfer function falls

off at a rate of 18 dB/oct. beyond the cutoff frequency. The impulse

and step response for low-pass filters with various numbers of poles in

the complex frequency function are given in reference 70.
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